Skip to main content

Advertisement

Log in

Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:—an in silico and in vitro approach

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score − 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Inc IARC. India fact sheet 2020. Globocan. 2020;361:2.

    Google Scholar 

  3. GLOBOCAN Cervix uteri Source. Globocan 2020. Int Agent Res Cervic Uteri. 2020;419:1–10.

    Google Scholar 

  4. World Health Organization Breast Globocan 2020 Available online: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf.

  5. Lin TC. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21010281.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie M, Vesuna F, Botlagunta M, Bol GM, Irving A, Bergman Y, Hosmane RS, Kato Y, Winnard PT, Raman V. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget. 2015;6:29901–13. https://doi.org/10.18632/oncotarget.4898.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guo FF, Zhao RJ, Li DJ, Xu ZG, Kong LF. [Role of up-regulated DDX3 in the proliferation of human cervical cancer cells]. Zhonghua bing li xue za zhi = Chinese. J Pathol. 2021;50:119–24. https://doi.org/10.3760/cma.j.cn112151-20200519-00394.

    Article  CAS  Google Scholar 

  8. Bol GM, Xie M, Raman V. DDX3, a potential target for cancer treatment. Mol Cancer. 2015. https://doi.org/10.1186/s12943-015-0461-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Soto-Rifo R, Ohlmann T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. Wiley Interdiscip Rev RNA. 2013. https://doi.org/10.1002/wrna.1165.

    Article  PubMed  Google Scholar 

  10. Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol. 2011;4:1–20. https://doi.org/10.4161/cib.4.1.13844.

    Article  CAS  Google Scholar 

  11. Silverman E, Edwalds-Gilbert G, Lin RJ. DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene. 2003;312:1–16.

    Article  CAS  Google Scholar 

  12. de la Cruz J, Iost I, Kressler D, Linder P. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997. https://doi.org/10.1073/pnas.94.10.5201.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tanner NK, Linder P. DExD/H box RNA helicases: From generic motors to specific dissociation functions. Mol Cell. 2001;8:251–62.

    Article  CAS  Google Scholar 

  14. He Y, Zhang D, Yang Y, Wang X, Zhao X, Zhang P, Zhu H, Xu N, Liang S. A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncol Rep. 2018. https://doi.org/10.3892/or.2018.6203.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rinkevich AR, B. The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro Assays. Curr Med Chem. 2007;14:2517–25.

    Article  Google Scholar 

  16. Kotov AA, Olenkina OM, Godneeva BK, Adashev VE, Olenina LV. Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci Trends. 2017. https://doi.org/10.5582/bst.2016.01216.

    Article  PubMed  Google Scholar 

  17. Lai M-C, Chang W-C, Shieh S-Y, Tarn W-Y. DDX3 regulates cell growth through translational Control of cyclin E1. Mol Cell Biol. 2010. https://doi.org/10.1128/mcb.00560-10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xie M, Vesuna F, Tantravedi S, Bol GM, Van Voss MRH, Nugent K, Malek R, Gabrielson K, Van Diest PJ, Tran PT, et al. RK-33 radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res. 2016. https://doi.org/10.1158/0008-5472.CAN-16-0440.

    Article  PubMed  PubMed Central  Google Scholar 

  19. López de Victoria A, Koculi E. Targeting the human DEAD-box RNA helicase, DDX3, as a novel strategy to inhibit aggressive breast cancer metastasis. Biophys J. 2015;108:225a. https://doi.org/10.1016/j.bpj.2014.11.1242.

    Article  Google Scholar 

  20. Sun M, Song L, Zhou T, Gillespie GY, Jope RS. The role of DDX3 in regulating Snail. Biochim Biophys Acta - Mol Cell Res. 2011. https://doi.org/10.1016/j.bbamcr.2011.01.003.

    Article  Google Scholar 

  21. Botlagunta M, Kollapalli B, Kakarla L, Gajarla SP, Gade SP, Dadi CL, Penumadu A, Javeed S. In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Bioinformation. 2016;12:347–53. https://doi.org/10.6026/97320630012347.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bheemanapally K, Thimmaraju MK, Kasagoni S, Thatikonda P, Akula S, Kodamala KR, Kakarla L, Gummadi SB, Nemani H, Botlagunta M. In vitro anti-cancer activity of rosuvastatin and ketorolac nanoformulations against DDX3. J Young Pharm. 2017. https://doi.org/10.5530/jyp.2017.9.103.

    Article  Google Scholar 

  23. Högbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Hedestam GBK, Schiavone LH. Crystal Structure of conserved domains 1 and 2 of the Human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol. 2007. https://doi.org/10.1016/j.jmb.2007.06.050.

    Article  PubMed  Google Scholar 

  24. Samal SK, Routray S, Veeramachaneni GK, Dash R, Botlagunta M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 2015. https://doi.org/10.1038/srep09982.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heerma van Voss MR, Vesuna F, Bol GM, Afzal J, Tantravedi S, Bergman Y, Kammers K, Lehar M, Malek R, Ballew M, et al. Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment. Oncogene. 2017;37(1):63–74.

    Article  Google Scholar 

  26. Pieterse L, Legoabe LJ, Beteck RM, Ruchaud S. CHEMISTRY Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Med Chem Res. 2020. https://doi.org/10.1007/s00044-020-02560-1.

    Article  Google Scholar 

  27. Pasha A, Kumbhakar DV, Doneti R, Kumar K, Dharmapuri G, Poleboyina PK, S. K H, Basavaraju P, Pasumarthi D, S. D A, et al. Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and in Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6692628.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dharmapuri G, Doneti R, Philip GH, Kalle AM. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res. 2015. https://doi.org/10.1016/j.leukres.2015.02.013.

    Article  PubMed  Google Scholar 

  29. Bol G, Raman V, van der Groep P. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS ONE. 2013;8: e63548. https://doi.org/10.1371/journal.pone.0063548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang JS, Chao CC, Su TL, Yeh SH, Chen DS, Chen CT, Chen PJ, Jou YS. Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2004;315:950–8. https://doi.org/10.1016/j.bbrc.2004.01.151.

    Article  CAS  PubMed  Google Scholar 

  31. Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, et al. Targeting DDX 3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648–69. https://doi.org/10.15252/emmm.201404368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tantravedi S, Vesuna F, Winnard PT, Martin A, Lim M, Eberhart CG, Berlinicke C, Raabe E, van Diest PJ, Raman V. Targeting DDX3 in medulloblastoma using the small molecule inhibitor RK-33. Transl Oncol. 2019;12:96–105. https://doi.org/10.1016/j.tranon.2018.09.002.

    Article  PubMed  Google Scholar 

  33. Tsai WC, Hueng DY, Lin CR, Yang TCK, Nieh S, Gao HW. Applying DDX3X biomarker to discriminate atypical from benign meningiomas in tissue microarray. Appl Immunohistochem Mol Morphol. 2018;26:263–7. https://doi.org/10.1097/PAI.0000000000000422.

    Article  CAS  PubMed  Google Scholar 

  34. Chen HH, Yu HI, Yang MH, Tarn WY. DDX3 Activates CBC-eIF3–Mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC. Cancer Res. 2018;78:4512–23. https://doi.org/10.1158/0008-5472.CAN-18-0282.

    Article  CAS  PubMed  Google Scholar 

  35. Heerma van Voss MR, van Kempen PMW, Noorlag R, van Diest PJ, Willems SM, Raman V. DDX3 has divergent roles in head and neck squamous cell carcinomas in smoking versus non-smoking patients. Oral Dis. 2015;21:270–1. https://doi.org/10.1111/odi.12299.

    Article  CAS  PubMed  Google Scholar 

  36. Fu R, Yang P, Li Z, Liu W, Amin S, Li Z. Avenanthramide a triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-1825-5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heerma Van Voss MR, Vesuna F, Bol GM, Meeldijk J, Raman A, Offerhaus GJ, Buerger H, Patel AH, Van Der Wall E, Van Diest PJ, et al. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. Onco Targets Ther. 2017;10:3501–13. https://doi.org/10.2147/OTT.S140639.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liang S, Yang Z, Li D, Miao X, Yang L, Zou Q, Yuan Y. The clinical and pathological significance of nectin-2 and DDX3 expression in pancreatic ductal adenocarcinomas. Dis Markers. 2015. https://doi.org/10.1155/2015/379568.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miao X, Yang ZL, Xiong L, Zou Q, Yuan Y, Li J, Liang L, Chen M, Chen S. 2013 Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol. 2013;6(2):179.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, Devine LR, Cole RN, Raman V, Loeb DM. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene. 2016;35:2574–83. https://doi.org/10.1038/onc.2015.336.

    Article  CAS  PubMed  Google Scholar 

  41. Hueng DY, Tsai WC, Chiou HYC, Feng SW, Lin C, Li YF, Huang LC, Lin MH. DDX3X biomarker correlates with poor survival in human gliomas. Int J Mol Sci. 2015;16:15578–91. https://doi.org/10.3390/ijms160715578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yedavalli VSRK, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 2004;119:381–92. https://doi.org/10.1016/j.cell.2004.09.029.

    Article  CAS  PubMed  Google Scholar 

  43. Lai M-C, Lee Y-HW, Tarn W-Y. The DEAD-Box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well astip-associated protein and participates in translational control. Mol Biol Cell. 2008;19:3847–58. https://doi.org/10.1091/mbc.e07-12-1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 2008;36:4708–18. https://doi.org/10.1093/nar/gkn454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun M, Zhou T, Jonasch E, Jope RS. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta - Mol Cell Res. 2013;1833:1489–97. https://doi.org/10.1016/j.bbamcr.2013.02.026.

    Article  CAS  Google Scholar 

  46. Li Y, Wang H, Wang Z, Makhija S, Buchsbaum D, LoBuglio A, Kimberly R, Zhou T. Inducible resistance of tumor cells to tumor necrosis factor-related apoptosis-inducing ligand receptor 2-mediated apoptosis by generation of a blockade at the death domain function. Cancer Res. 2006;66:8520–8. https://doi.org/10.1158/0008-5472.CAN-05-4364.

    Article  CAS  PubMed  Google Scholar 

  47. Sun M, Song L, Li Y, Zhou T, Jope RS. Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ. 2008;15:1887–900. https://doi.org/10.1038/cdd.2008.124.

    Article  CAS  PubMed  Google Scholar 

  48. Liang CC, Park AY, Guan JL. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33. https://doi.org/10.1038/nprot.2007.30.

    Article  CAS  PubMed  Google Scholar 

  49. Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff A, Bin; Navaderi, M., Mohamad, R. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 2017. https://doi.org/10.3390/genes8100281.

    Article  Google Scholar 

  50. Luk SCW, Siu SWF, Lai CK, Wu YJ, Pang SF. Cell cycle arrest by a natural product via G2/M checkpoint. Int J Med Sci. 2005;2(2):64–9.

    Article  CAS  Google Scholar 

  51. Cannizzaro E, Bannister AJ, Han N, Alendar A, Kouzarides T. DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4. FEBS Lett. 2018;592:2308–22. https://doi.org/10.1002/1873-3468.13106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukumura J. A Temperature-sensitive mutant of the mammalian RNA helicase, DEAD-box X isoform, DBX, defective in the transition from G1 to S phase. J Biochem. 2003;134:71–82. https://doi.org/10.1093/jb/mvg126.

    Article  CAS  PubMed  Google Scholar 

  53. Sekiguchi T, Kurihara Y, Fukumura J. Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro. Biochem Biophys Res Commun. 2007;356:668–73. https://doi.org/10.1016/j.bbrc.2007.03.038.

    Article  CAS  PubMed  Google Scholar 

  54. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P, Mukadam S, Van Diest P, Chen JH, Farabaugh P, et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008;27:3912–22. https://doi.org/10.1038/onc.2008.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kondaskar A, Kondaskar S, Kumar R, Fishbein JC, Muvarak N, Lapidus RG, Sadowska M, Edelman MJ, Bol GM, Vesuna F, et al. Novel, broad spectrum anticancer agents containing the tricyclic 5:7:5-fused diimidazodiazepine ring system. ACS Med Chem Lett. 2011;2:252–6. https://doi.org/10.1021/ml100281b.

    Article  CAS  Google Scholar 

  56. Li Q, Zhang P, Zhang C, Wang Y, Wan R, Yang Y, Guo X, Huo R, Lin M, Zhou Z, et al. DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res. 2014;28:282–91. https://doi.org/10.7555/JBR.27.20130047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chao CH, Chen CM, Cheng PL, Shih JW, Tsou AP, Lee YHW. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 2006;66:6579–88. https://doi.org/10.1158/0008-5472.CAN-05-2415.

    Article  CAS  PubMed  Google Scholar 

  58. Shih JW, Tsai TY, Chao CH, Wu Lee YH. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. 2008;27:700–14. https://doi.org/10.1038/sj.onc.1210687.

    Article  CAS  PubMed  Google Scholar 

  59. Wu DW, Liu WS, Wang J, Chen CY, Cheng YW, Lee H. Reduced p21WAF1/CIP1 via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res. 2011;17:1895–905. https://doi.org/10.1158/1078-0432.CCR-10-2316.

    Article  CAS  PubMed  Google Scholar 

  60. Ausprunk DH, Folkman J. Vascular injury in transplanted tissues. Virchows Arch B Cell Pathol. 1976;21:31–44. https://doi.org/10.1007/bf02899142.

    Article  Google Scholar 

  61. Wick W, Wagner S, Kerkau S, Dichgans J, Tonn JC, Weller M. BCL-2 promotes migration and invasiveness of human glioma cells. FEBS Lett. 1998;440:419–24. https://doi.org/10.1016/S0014-5793(98)01494-X.

    Article  CAS  PubMed  Google Scholar 

  62. Wick W, Wild-Bode C, Frank B, Weller M. BCL-2-induced glioma cell invasiveness depends on furin-like proteases. J Neurochem. 2004;91:1275–83. https://doi.org/10.1111/j.1471-4159.2004.02806.x.

    Article  CAS  PubMed  Google Scholar 

  63. Noujaim D, van Golen CM, van Golen KL, Grauman A, Feldman EL. N-Myc and Bcl-2 coexpression induces MMP-2 secretion and activation in human neuroblastoma cells. Oncogene. 2002;21:4549–57. https://doi.org/10.1038/sj.onc.1205552.

    Article  CAS  PubMed  Google Scholar 

  64. Trisciuoglio D, Desideri M, Ciuffreda L, Mottolese M, Ribatti D, Vacca A, Del Rosso M, Marcocci L, Zupi G, Del Bufalo D. Bcl-2 overexpression in melanoma cells increases tumor progression- associated properties and in vivo tumor growth. J Cell Physiol. 2005;205:414–21. https://doi.org/10.1002/jcp.20413.

    Article  CAS  PubMed  Google Scholar 

  65. Zuo J, Ishikawa T, Boutros S, Xiao Z, Humtsoe JO, Kramer RH. Bcl-2 overexpression induces a partial epithelial to mesenchymal transition and promotes squamous carcinoma cell invasion and metastasis. Mol Cancer Res. 2010;8:170–82. https://doi.org/10.1158/1541-7786.MCR-09-0354.

    Article  CAS  PubMed  Google Scholar 

  66. Del Bufalo D, Biroccio A, Leonetti C, Zupi G. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J. 1997;11:947–53. https://doi.org/10.1096/fasebj.11.12.9337147.

    Article  PubMed  Google Scholar 

  67. Choi J, Choi K, Benveniste EN, Hong YS, Lee JH, Kim J, Park K. Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res. 2005;65:5554–60. https://doi.org/10.1158/0008-5472.CAN-04-4570.

    Article  CAS  PubMed  Google Scholar 

  68. Koehler BC, Scherr AL, Lorenz S, Urbanik T, Kautz N, Elssner C, Welte S, Bermejo JL, Jäger D, Schulze-Bergkamen H. Beyond cell Death - antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0076446.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pepper C, Hoy T, Bentley DP. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer. 1997;76:935–8. https://doi.org/10.1038/bjc.1997.487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem. 2005;280:10781–9. https://doi.org/10.1074/jbc.M500084200.

    Article  CAS  PubMed  Google Scholar 

  71. Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74:609–19. https://doi.org/10.1016/0092-8674(93)90509-O.

    Article  Google Scholar 

  72. Yu C, Friday BB, Yang L, Atadja P, Wigle D, Sarkaria J, Adjei AA. Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro Oncol. 2008;10:309–19. https://doi.org/10.1215/15228517-2007-063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. Nat Rev Cancer. 2016;16:663–73. https://doi.org/10.1038/nrc.2016.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heerma van Voss MR, Vesuna F, Bol GM, Afzal J, Tantravedi S, Bergman Y, Kammers K, Lehar M, Malek R, Ballew M, et al. Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment. Oncogene. 2018;37:63–74. https://doi.org/10.1038/onc.2017.308.

    Article  CAS  PubMed  Google Scholar 

  75. Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Woo K, Smita L. Inhibition of DDX3 and COX - 2 by forskolin and evaluation of anti - proliferative, pro - apoptotic effects on cervical cancer cells : molecular modelling and in vitro approaches. Med Oncol. 2022. https://doi.org/10.1007/s12032-022-01658-3.

    Article  PubMed  Google Scholar 

  76. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of Bax protein for cancer therapy. Med Res Rev. 2016;36:313–41. https://doi.org/10.1002/med.21379.

    Article  CAS  PubMed  Google Scholar 

  77. Kukhanova MK, Karpenko IL, Ivanov A. V DEAD-box RNA helicase DDX3: functional properties and development of DDX3 inhibitors as antiviral and anticancer drugs. Molecules. 2020;25:1015. https://doi.org/10.3390/molecules25041015.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

SERB Project reference no.SB/EMEQ-471/2014; Date: 17/06/2014; EEQ/2019/000569, Dated: 02/01/2020. DBT-BUILDER, Level – III Sanction Lr. No: BT/INF/22/SP41415/2021, Akbar Pasha was supported by CSIR-UGC fellowship, reference Nos. 648, at the Department of Genetics, Osmania University.

Funding

DST-SERB,SB/EMEQ-471/2014,Smita C Pawar,Date: 17/06/2014,Smita C Pawar,DSt-SERB,EEQ/2019/000569,Smita C Pawar,Dated: 02/01/202,Smita C Pawar,DBT-BUILDER,Level – III,BT/INF/22/SP41415/2021,Smita C Pawar

Author information

Authors and Affiliations

Authors

Contributions

DR, AP, MB, and SCP: conceptualization of work plan, synthesis and characterization of the small molecule 7AID, in vitro and clinical studies, manuscript writing. DR, AP, MB, and SCP: data analysis and interpretation. DR and AP: manuscript writing & review and editing. AP and SKH: performed IHC data analysis and interpretation. MVVVP: synthesis and characterization of the small molecule 7AID & Molecular Docking, data analysis. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Smita C. Pawar.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest and no additional benefits or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The study was approved by the ethics committee of MNJ Institute of Oncology & Regional Cancer Centre and institutional ethical committee for biomedical research for the collection of cervical tissue samples. Prior informed written consent & clinical information were collected from the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doneti, R., Pasha, A., Botlagunta, M. et al. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:—an in silico and in vitro approach. Med Oncol 39, 179 (2022). https://doi.org/10.1007/s12032-022-01826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01826-5

Keywords

Navigation