Skip to main content

Advertisement

Log in

Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The growth and formation of blood vessels is an undeniably fundamental biological process crucial to controlling overall development of an organism. This phenomenon consists of two separate processes, commencing with vasculogenesis, which refers to the process of blood vessel formation strictly in embryonic stages, via de novo endothelial cell synthesis. Angiogenesis continues the formation of the vascular network via sprouting and splitting. Tumor growth is dependent on the growth and supply of blood vessels around the tumor mass. Extracellular matrix (ECM) molecules can promote angiogenesis by establishing a vascular network and sequestering pro-angiogenic growth factors. Although the methods by which tumor-associated fibroblasts (which differ in phenotype from normal fibroblasts) influence angiogenesis are unknown, they are thought to be a major source of growth factors and cytokines that attract endothelial cells. Chemokines and growth factors (sourced from macrophages and neutrophils) are also regulators of angiogenesis. When considered as a whole, the tumor microenvironment is a heterogenous and dynamic mass of tissue, composed of a plethora of cell types and an ECM that can fundamentally control the pathological angiogenic switch. Angiogenesis is involved in numerous diseases, and understanding the various mechanisms surrounding this phenomenon is key to finding cures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iruela-Arispe M, Davis G. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell. 2009;16(2):222–31. https://doi.org/10.1016/j.devcel.2009.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the developing vascular and neural systems: signaling pathways and future perspectives for regenerative medicine. Adv Sci. 2021;8(23):2101837. https://doi.org/10.1002/advs.202101837.

    Article  Google Scholar 

  3. Campinho P, Vilfan A, Vermot J. Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior. Front Physiol. 2020. https://doi.org/10.3389/fphys.2020.00552.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Urade R, Chiu Y, Chiu C, Wu C. Small GTPases and their regulators: a leading road toward blood vessel development in zebrafish. Int J Mol Sci. 2022;23(9):4991. https://doi.org/10.3390/ijms23094991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sophia L, Singh D, Xalxo N, Yadav A, Agarwal S, Singh U, Jain P. Upper limb arterial pattern: clinical correlation and embryological perspective. J Vasc Brasileiro. 2021. https://doi.org/10.1590/1677-5449.210008.

    Article  Google Scholar 

  6. Nitzsche B, Rong W, Goede A, Hoffmann B, Scarpa F, Kuebler W, et al. Coalescent angiogenesis—evidence for a novel concept of vascular network maturation. Angiogenesis. 2021;25(1):35–45. https://doi.org/10.1007/s10456-021-09824-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noden D. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis. 1989;140(4):1097–103. https://doi.org/10.1164/ajrccm/140.4.1097.

    Article  CAS  PubMed  Google Scholar 

  8. Pezzella F, Kerbel R. On coalescent angiogenesis and the remarkable flexibility of blood vessels. Angiogenesis. 2022;25(1):1–3. https://doi.org/10.1007/s10456-021-09825-2.

    Article  PubMed  Google Scholar 

  9. Teleanu R, Chircov C, Grumezescu A, Teleanu D. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019;9(1):84. https://doi.org/10.3390/jcm9010084.

    Article  CAS  PubMed Central  Google Scholar 

  10. Masood F, Bhattaram R, Rosenblatt M, Kazlauskas A, Chang J, Azar D. Lymphatic vessel regression and its therapeutic applications: learning from principles of blood vessel regression. Front Physiol. 2022. https://doi.org/10.3389/fphys.2022.846936.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics. 2022;12(11):5015–33. https://doi.org/10.7150/thno.74785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown J. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br J Radiol. 2014;87(1035):20130686. https://doi.org/10.1259/bjr.20130686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peters E. Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng Part B Rev. 2018;24(1):1–24. https://doi.org/10.1089/ten.teb.2017.0127.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farina A, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay A. Hypoxia-induced alternative splicing: the 11th hallmark of cancer. J Exp Clin Cancer Res. 2020. https://doi.org/10.1186/s13046-020-01616-9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Newport E, Pedrosa A, Njegic A, Hodivala-Dilke K, Muñoz-Félix J. Improved immunotherapy efficacy by vascular modulation. Cancers. 2021;13(20):5207. https://doi.org/10.3390/cancers13205207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moeini P, Niedźwiedzka-Rystwej P. Tumor-associated macrophages: combination of therapies, the approach to improve cancer treatment. Int J Mol Sci. 2021;22(13):7239. https://doi.org/10.3390/ijms22137239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kioi M, Vogel H, Schultz G, Hoffman R, Harsh G, Brown J. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Investig. 2010;120(3):694–705.

    Article  CAS  Google Scholar 

  18. Vasudev N, Reynolds A. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17(3):471–94. https://doi.org/10.1007/s10456-014-9420-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer (Review). Oncol Lett. 2018. https://doi.org/10.3892/ol.2018.8733.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nagabhishek S, Madan Kumar ABS, Balakrishnan A, Katakia Y, Chatterjee S, Nagasundaram N. A marine sponge associated fungal metabolite monacolin X suppresses angiogenesis by down regulating VEGFR2 signaling. RSC Adv. 2019;9(46):26646–67. https://doi.org/10.1039/c9ra05262c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verheul H, Pinedo H. The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGFReceptor kinase inhibitors. Clin Breast Cancer. 2000;1:S80–4. https://doi.org/10.3816/cbc.2000.s.015.

    Article  PubMed  Google Scholar 

  22. Park S, Jeong M, Ha K, Jang S. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 2018;51(2):73–8. https://doi.org/10.5483/bmbrep.2018.51.2.233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero J, Arana-Argáez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01370.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial cords promote tumor initial growth prior to vascular function through a paracrine mechanism. Sci Rep. 2016. https://doi.org/10.1038/srep19404.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17(6):1147–55. https://doi.org/10.1158/1535-7163.mct-17-0646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsushita K. Cell-alignment patterns in the collective migration of cells with polarized adhesion. Phys Rev E. 2017. https://doi.org/10.1103/physreve.95.032415.

    Article  PubMed  Google Scholar 

  27. Barbacena P, Dominguez-Cejudo M, Fonseca C, Gómez-González M, Faure L, Zarkada G, et al. Competition for endothelial cell polarity drives vascular morphogenesis. SSRN Electron J. 2022. https://doi.org/10.2139/ssrn.4017899.

    Article  Google Scholar 

  28. Logeay R, Géminard C, Lassus P, Rodríguez-Vázquez M, Kantar D, Heron-Milhavet L, et al. Mechanisms underlying the cooperation between loss of epithelial polarity and notch signaling during neoplastic growth in Drosophila. Development. 2022. https://doi.org/10.1242/dev.200110.

    Article  PubMed  Google Scholar 

  29. Roca C, Adams R. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007;21(20):2511–24. https://doi.org/10.1101/gad.1589207.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Kontos C, Annex B, Popel A. Angiopoietin-tie signaling pathway in endothelial cells: a computational model. Iscience. 2019;20:497–511. https://doi.org/10.1016/j.isci.2019.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Majesky M. Vascular development. Arterioscler Thromb Vasc Biol. 2018. https://doi.org/10.1161/atvbaha.118.310223.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77. https://doi.org/10.1083/jcb.200302047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A. The notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci. 2007;104(9):3225–30. https://doi.org/10.1073/pnas.0611177104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodsell D. Vascular endothelial growth factor (VegF) and Angiogenesis. RCSB Protein Data Bank. 2022. https://doi.org/10.2210/rcsb_pdb/mom_2022_3.

    Article  Google Scholar 

  35. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch A, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci. 2009;106(15):6152–7. https://doi.org/10.1073/pnas.0813061106.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eelen G, Treps L, Li X, Carmeliet P. Basic and therapeutic aspects of angiogenesis updated. Circ Res. 2020;127(2):310–29. https://doi.org/10.1161/circresaha.120.316851.

    Article  CAS  PubMed  Google Scholar 

  37. Arany Z, Foo S, Ma Y, Ruas J, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature. 2008;451(7181):1008–12. https://doi.org/10.1038/nature06613.

    Article  CAS  PubMed  Google Scholar 

  38. Weddell J, Chen S, Imoukhuede P. VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways. Npj Syst Biol Appl. 2017. https://doi.org/10.1038/s41540-017-0037-9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee H, Xu Y, He L, Choi W, Gonzalez D, Jin S, Simons M. Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation. 2021;144(16):1308–22. https://doi.org/10.1161/circulationaha.121.054071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Modi SJ, Kulkarni VM. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: medicinal chemistry perspective. Med Drug Dis. 2019;2:100009. https://doi.org/10.1016/j.medidd.2019.100009.

    Article  Google Scholar 

  41. Guarino B, Katari V, Adapala R, Bhavnani N, Dougherty J, Khan M, et al. Tumor-derived extracellular vesicles induce abnormal angiogenesis via TRPV4 downregulation and subsequent activation of YAP and VEGFR2. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.790489.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeng A, Wang S, He Y, Yan Y, Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell. 2021;73:101626. https://doi.org/10.1016/j.tice.2021.101626.

    Article  CAS  PubMed  Google Scholar 

  43. Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34(4):536–48. https://doi.org/10.1016/j.ccell.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  44. Kofler N, Shawber C, Kangsamaksin T, Reed H, Galatioto J, Kitajewski J. Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2011;2(12):1106–16. https://doi.org/10.1177/1947601911423030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Motherwell J, Anderson C, Murfee W. Endothelial cell phenotypes are maintained during angiogenesis in cultured microvascular networks. Sci Reps. 2018. https://doi.org/10.1038/s41598-018-24081-z.

    Article  Google Scholar 

  46. Arjonen A, Kaukonen R, Ivaska J. Filopodia and adhesion in cancer cell motility. Cell Adh Migr. 2011;5(5):421–30. https://doi.org/10.4161/cam.5.5.17723.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zecchin A, Kalucka J, Dubois C, Carmeliet P. How endothelial cells adapt their metabolism to form vessels in tumors. Front Immunol. 2017. https://doi.org/10.3389/fimmu.2017.01750.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ganss R. Tumour vessel remodelling: new opportunities in cancer treatment. Vasc Biol. 2020;2(1):R35–43. https://doi.org/10.1530/vb-19-0032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Watson E, Grant Z, Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci. 2017;74(24):4387–403. https://doi.org/10.1007/s00018-017-2577-y.

    Article  CAS  PubMed  Google Scholar 

  50. Johnstone R, Ruefli A, Lowe S. Apoptosis. Cell. 2002;108(2):153–64. https://doi.org/10.1016/s0092-8674(02)00625-6.

    Article  CAS  PubMed  Google Scholar 

  51. Ribatti D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis. 2008;11(1):3–10. https://doi.org/10.1007/s10456-008-9092-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sajib S, Zahra F, Lionakis M, German N, Mikelis C. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis. 2017;21(1):1–14. https://doi.org/10.1007/s10456-017-9583-4.

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Bove A, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.599281.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chua C, Hamdy R, Chua B. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med. 1998;25(8):891–7. https://doi.org/10.1016/s0891-5849(98)00115-4.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng J, Yang H, Gu C, Liu Y, Shao J, Zhu R, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med. 2018. https://doi.org/10.3892/ijmm.2018.4021.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25. https://doi.org/10.1038/nrm.2016.87.

    Article  CAS  PubMed  Google Scholar 

  57. Lowe V, Wisniewski L, Pellet-Many C. The zebrafish cardiac endothelial cell—roles in development and regeneration. J Cardiovasc Dev Dis. 2021;8(5):49. https://doi.org/10.3390/jcdd8050049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qu X, Harmelink C, Baldwin H. Endocardial-myocardial interactions during early cardiac differentiation and trabeculation. Front Cardiovasc Med. 2022. https://doi.org/10.3389/fcvm.2022.857581.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Akwii R, Sajib M, Zahra F, Mikelis C. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. https://doi.org/10.3390/cells8050471.

    Article  CAS  PubMed Central  Google Scholar 

  60. Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer. 2008;8(12):942–56. https://doi.org/10.1038/nrc2524.

    Article  CAS  PubMed  Google Scholar 

  61. Cucu I, Nicolescu M. A synopsis of signaling crosstalk of pericytes and endothelial cells in salivary gland. Dent J. 2021;9(12):144. https://doi.org/10.3390/dj9120144.

    Article  Google Scholar 

  62. Li C, Brown S, Mehrara B, Kataru R. Lymphatics in tumor progression and immunomodulation. Int J Mol Sci. 2022;23(4):2127. https://doi.org/10.3390/ijms23042127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu P, Becker A, Park J. Growth inhibitory signaling of the Raf/MEK/ERK pathway. Int J Mol Sci. 2020;21(15):5436. https://doi.org/10.3390/ijms21155436.

    Article  CAS  PubMed Central  Google Scholar 

  64. Jin S, Beis D, Mitchell T, Chen J, Stainier D. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 2005;132(23):5199–209. https://doi.org/10.1242/dev.02087.

    Article  CAS  PubMed  Google Scholar 

  65. Dziobek K, Opławski M, Grabarek B, Zmarzły N, Tomala B, Halski T, et al. Changes in the expression profile of VEGF-A, VEGF-B, VEGFR-1, VEGFR-2 in different grades of endometrial cancer. Curr Pharm Biotechnol. 2019;20(11):955–63. https://doi.org/10.2174/1389201020666190717092448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee W, Slutsky A. Acute hypoxemic respiratory failure and ARDS. Murray Nadel’s Textbook Respir Med. 2016;1740–1760:e7. https://doi.org/10.1016/b978-1-4557-3383-5.00100-7.

    Article  Google Scholar 

  67. Ribatti D, Solimando A, Pezzella F. The anti-VEGF(R) drug discovery legacy: improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers. 2021;13(14):3433. https://doi.org/10.3390/cancers13143433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hirose M, Matsumuro A, Arai T, Sugimoto C, Akira M, Kitaichi M, et al. Serum vascular endothelial growth factor-D as a diagnostic and therapeutic biomarker for lymphangioleiomyomatosis. PLoS ONE. 2019;14(2):e0212776. https://doi.org/10.1371/journal.pone.0212776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang J, Yao L, Li Y, Gao R, Huo R, Xia L, et al. Interleukin-35 Regulates angiogenesis through P38 mitogen-activated protein kinase signaling pathway in interleukin-1β-stimulated SW1353 cells and cartilage bioinformatics analysis. J Interferon Cytokine Res. 2021;41(5):164–71. https://doi.org/10.1089/jir.2021.0016.

    Article  CAS  PubMed  Google Scholar 

  70. Saikia P, Das D, Mize D, Das M, Sarma H. Spatiotemporal expression of vascular endothelial growth factor-C in mice fetal-maternal tissues during periimplantation (D4–D7). Middle East Fertili Soc J. 2017;22(2):115–24. https://doi.org/10.1016/j.mefs.2016.10.001.

    Article  Google Scholar 

  71. Thirunavukkarasu M, Selvaraju V, Joshi M, Coca-Soliz V, Tapias L, Saad I, et al. Disruption of VEGF mediated Flk-1 signaling leads to a gradual loss of vessel health and cardiac function during myocardial infarction: potential therapy with Pellino-1. J Am Heart Assoc. 2018. https://doi.org/10.1161/jaha.117.007601.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein B. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12(6):711–6. https://doi.org/10.1038/nm1427.

    Article  CAS  PubMed  Google Scholar 

  73. Yao J, Wu X, Zhuang G, Kasman I, Vogt T, Phan V, et al. Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy. Proc Natl Acad Sci. 2011;108(28):11590–5. https://doi.org/10.1073/pnas.1109029108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Angiogenesis, Cell Signaling Technology. 2022. https://www.cellsignal.com/pathways/angiogenesis-pathway Accessed 22 March 2022

  75. Brindle N, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23. https://doi.org/10.1161/01.res.0000218275.54089.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic targeting of signaling pathways related to cancer stemness. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.01533.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim H, Ji Y, Lee Y. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharmacal Res. 2022;45(6):401–16. https://doi.org/10.1007/s12272-022-01389-z.

    Article  CAS  Google Scholar 

  78. Gavard J, Patel V, Gutkind J. Angiopoietin-1 prevents VEGF-Induced endothelial permeability by sequestering src through mDia. Dev Cell. 2008;14(1):25–36. https://doi.org/10.1016/j.devcel.2007.10.019.

    Article  CAS  PubMed  Google Scholar 

  79. Saharinen P, Bry M, Alitalo K. How do angiopoietins Tie with vascular endothelial growth factors? Curr Opin Hematol. 2010. https://doi.org/10.1097/moh.0b013e3283386673.

    Article  PubMed  Google Scholar 

  80. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62. https://doi.org/10.1016/j.molmed.2011.01.015.

    Article  CAS  PubMed  Google Scholar 

  81. Yang P, Chen N, Yang D, Crane J, Yang S, Wang H, et al. The ratio of serum Angiopoietin-1 to Angiopoietin-2 in patients with cervical cancer is a valuable diagnostic and prognostic biomarker. PeerJ. 2017;5:e3387. https://doi.org/10.7717/peerj.3387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niklander S, Bordagaray M, Fernández A, Hernández M. Vascular endothelial growth factor: a translational view in oral non-communicable diseases. Biomolecules. 2021;11(1):85. https://doi.org/10.3390/biom11010085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh H, Milner C, Aguilar Hernandez M, Patel N, Brindle N. Vascular endothelial growth factor activates the Tie family of receptor tyrosine kinases. Cell Signal. 2009;21(8):1346–50. https://doi.org/10.1016/j.cellsig.2009.04.002.

    Article  CAS  PubMed  Google Scholar 

  84. Stacker S, Achen M. The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer. 2013;32(6):297–302. https://doi.org/10.5732/cjc.012.10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas M, Augustin H. The role of the angiopoietins in vascular morphogenesis. Angiogenesis. 2009;12(2):125–37. https://doi.org/10.1007/s10456-009-9147-3.

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Yan W, Lu X, Qian C, Zhang J, Li P, et al. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. Eur J Cell Biol. 2011;90(8):642–8. https://doi.org/10.1016/j.ejcb.2011.03.005.

    Article  CAS  PubMed  Google Scholar 

  87. Yip H, Papa A. Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells. 2021;10(3):659. https://doi.org/10.3390/cells10030659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang C, Liu Z, Chen M, Du L, Liu C, Wang S, et al. Tumor-derived biomimetic nanozyme with immune evasion ability for synergistically enhanced low dose radiotherapy. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01182-y.

    Article  Google Scholar 

  89. Kumar A, Deep G. Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Lett. 2020;488:1–8. https://doi.org/10.1016/j.canlet.2020.05.018.

    Article  CAS  PubMed  Google Scholar 

  90. Jena B, Mandal M. (2021) The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: an insight towards tumor-microenvironment interaction. Biochim Biophys Acta Rev Cancer. 1875;1:188488. https://doi.org/10.1016/j.bbcan.2020.188488.

    Article  CAS  Google Scholar 

  91. Rad L, Yumashev A, Hussen B, Jamad H, Ghafouri-Fard S, Taheri M, et al. Therapeutic potential of microvesicles in cell therapy and regenerative medicine of ocular diseases with an especial focus on mesenchymal stem cells-derived microvesicles. Front Genet. 2022. https://doi.org/10.3389/fgene.2022.84767930.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatachalam Deepa Parvathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatakrishnan, G., Parvathi, V.D. Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy. Med Oncol 39, 178 (2022). https://doi.org/10.1007/s12032-022-01810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01810-z

Keywords

Navigation