Skip to main content

Investigation of the effect of meclofenamic acid on the proteome of LNCaP cells reveals changes in alternative polyadenylation and splicing machinery

Abstract

Prostate cancer is the most common type of cancer among men, and there is still no definitively effective drug treatment. Thus, the search for novel drug agents that may be used for the effective treatment continues. Meclofenamic acid (MA), a non-steroidal anti-inflammatory drug, with anti-tumor effects in various types of cancers was used to investigate its effects on LNCaP cells, a prostate cancer cell line, at the proteome level. The cells were treated with 80 µM MA for 24 h and a comparative proteomic analysis was performed with their untreated control cells. Proteins were extracted from the cells and then were subjected to two-dimensional gel electrophoresis. Protein spots displaying changes in their regulation ratios for more than two-fold were excised from the gels and identified with MALDI-TOF/TOF mass spectrometry. Bioinformatics analysis of the differentially regulated proteins that we identified showed that they were all associated with and took part in related pathways. Glycolytic pathway, cytoskeletal formation, transport activity, protein metabolism, and most notably an mRNA processing pathway were affected by the MA treatment. In addition to presenting a detailed information for what is happening inside the cells upon MA treatment, the proteins affected by MA treatment hold the potential to be novel targets for prostate cancer treatment provided that further in vivo experiments are carried out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Merriel SWD, Funston G, Hamilton W. Prostate cancer in primary care. Adv Ther. 2018;35(9):1285–94.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heidenreich A. Novel therapies for advanced urologic cancers. Curr Opin Urol. 2020;30(4):594–601.

    Article  PubMed  Google Scholar 

  4. Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, inflammation, and prostate cancer. J Clin Med. 2019;8(2):201.

    Article  PubMed Central  CAS  Google Scholar 

  5. Brennen WN, Isaacs JT. Cellular origin of androgen receptor pathway-independent prostate cancer and implications for therapy. Cancer Cell. 2017;32(4):399–401.

    Article  PubMed  CAS  Google Scholar 

  6. Tan BL, Norhaizan ME. Oxidative stress, diet and prostate cancer. World J Mens Health. 2021;39(2):195–207.

    Article  PubMed  Google Scholar 

  7. Sugar LM. Inflammation and prostate cancer. Can J Urol. 2006;13(Suppl 1):46–7.

    PubMed  Google Scholar 

  8. Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, et al. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA. 2000;97(2):925–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Skarydova L, Zivna L, Xiong G, Maser E, Wsol V. AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem Biol Interact. 2009;178(1–3):138–44.

    Article  PubMed  CAS  Google Scholar 

  10. Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, et al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 2010;70(4):1573–84.

    Article  PubMed  CAS  Google Scholar 

  11. Byrns MC, Jin Y, Penning TM. Inhibitors of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem Mol Biol. 2011;125(1–2):95–104.

    Article  PubMed  CAS  Google Scholar 

  12. Kovala-Demertzi D, Dokorou V, Primikiri A, Vargas R, Silvestru C, Russo U, et al. Organotin meclofenamic complexes: synthesis, crystal structures and antiproliferative activity of the first complexes of meclofenamic acid - novel anti-tuberculosis agents. J Inorg Biochem. 2009;103(5):738–44.

    Article  PubMed  CAS  Google Scholar 

  13. Soh JW, Weinstein IB. Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res. 2003;37:261–85.

    Article  PubMed  CAS  Google Scholar 

  14. Schober W, Kehlbach R, Gebert R, Wiskirchen J, Rodegerdts E, Claussen CD, et al. Meclofenamic acid for inhibition of human vascular smooth muscle cell proliferation and migration: an in vitro study. Cardiovasc Intervent Radiol. 2002;25(1):57–63.

    Article  PubMed  Google Scholar 

  15. Lee YT, Wang Q. Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol. 1999;378(3):349–56.

    Article  PubMed  CAS  Google Scholar 

  16. Veruki ML, Hartveit E. Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. J Neurophysiol. 2009;101(5):2339–47.

    Article  PubMed  CAS  Google Scholar 

  17. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–84.

    Article  PubMed  CAS  Google Scholar 

  18. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNA methylation and cancer treatment. Pharmacol Res. 2021;174:105937.

    Article  PubMed  CAS  Google Scholar 

  20. Uslubas I, Kanli A, Kasap M, Akpinar G, Karabas L. Effect of aflibercept on proliferative vitreoretinopathy: proteomic analysis in an experimental animal model. Exp Eye Res. 2021;203:108425.

    Article  PubMed  CAS  Google Scholar 

  21. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.

    Article  PubMed  CAS  Google Scholar 

  22. Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m(6)A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol. 2019;145(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  23. Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387(10013):70–82.

    Article  PubMed  Google Scholar 

  24. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28(5):507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yamato I, Sho M, Shimada K, Hotta K, Ueda Y, Yasuda S, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 2012;72(18):4829–39.

    Article  PubMed  CAS  Google Scholar 

  26. Tasaki M, Shimada K, Kimura H, Tsujikawa K, Konishi N. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br J Cancer. 2011;104(4):700–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, et al. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol Rep. 2015;34(2):648–54.

    Article  PubMed  CAS  Google Scholar 

  28. Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 2020;11(12):3588–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Soriano-Hernandez AD, Galvan-Salazar HR, Montes-Galindo DA, Rodriguez-Hernandez A, Martinez-Martinez R, Guzman-Esquivel J, et al. Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: a preclinical evaluation. Int Urol Nephrol. 2012;44(2):471–7.

    Article  PubMed  CAS  Google Scholar 

  30. Delgado-Enciso I, Soriano-Hernandez AD, Rodriguez-Hernandez A, Galvan-Salazar HR, Montes-Galindo DA, Martinez-Martinez R, et al. Histological changes caused by meclofenamic acid in androgen-independent prostate cancer tumors: evaluation in a mouse model. Int Braz J Urol. 2015;41(5):1002–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sekine Y, Nakayama H, Miyazawa Y, Kato H, Furuya Y, Arai S, et al. Simvastatin in combination with meclofenamic acid inhibits the proliferation and migration of human prostate cancer PC-3 cells via an AKR1C3 mechanism. Oncol Lett. 2018;15(3):3167–72.

    PubMed  Google Scholar 

  32. Guzman-Esquivel J, Mendoza-Hernandez MA, Tiburcio-Jimenez D, Avila-Zamora ON, Delgado-Enciso J, De-Leon-Zaragoza L, et al. Decreased biochemical progression in patients with castration-resistant prostate cancer using a novel mefenamic acid anti-inflammatory therapy: a randomized controlled trial. Oncol Lett. 2020;19(6):4151–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Sahinoz B., Kanli A. Meclofenamic Acid, a Pharmacological Agent, Regulates the m6A Level by Inhibition the FTO Protein in Prostate Cancer Cell Line LNCaP Cells February 13–14, 2021/Ankara, Turkey pages: ISBN: 978-605-74616-0-5 2nd International Congress of Multidisciplinary Studies in Medical Sciences; 2021 25.02.2021; Ankara, Turkey IKSAD GLOBAL Publications – 2021. https://www.iksadcongress.org/_files/ugd/614b1f_1a08970eb403468fa177eec4165841e9.pdf

  34. Kanli A, Kasap M, Akpinar G, Yanar S. Changes occuring in the proteome of SH-SY5Y cells coused by Fat Mass and Obesity asccociated (FTO) protein expression reveals multifaced properties ıf the FTO protein. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi. 2020;6(2):101–12.

    Article  Google Scholar 

  35. Obeng EA, Stewart C, Abdel-Wahab O. Altered RNA processing in cancer pathogenesis and therapy. Cancer Discov. 2019;9(11):1493–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer. 2017;3(7):506–28.

    Article  PubMed  CAS  Google Scholar 

  37. Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol. 2000;20(5):1515–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yeh HS, Yong J. Alternative polyadenylation of mRNAs: 3′-untranslated region matters in gene expression. Mol Cells. 2016;39(4):281–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T. Alternative Polyadenylation: Methods, Findings, and Impacts. Genom Proteomics Bioinform. 2017;15(5):287–300.

    Article  Google Scholar 

  40. Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lembo A, Di Cunto F, Provero P. Shortening of 3′UTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE. 2012;7(2):e31129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang S, Zhang X, Lei W, Liang J, Xu Y, Liu H, et al. Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer. J Transl Med. 2019;17(1):257.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17(1):19–32.

    Article  PubMed  CAS  Google Scholar 

  44. Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 1990;4(7):1158–71.

    Article  PubMed  CAS  Google Scholar 

  45. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  46. Bermingham JR Jr, Arden KC, Naumova AK, Sapienza C, Viars CS, Fu XD, et al. Chromosomal localization of mouse and human genes encoding the splicing factors ASF/SF2 (SFRS1) and SC-35 (SFRS2). Genomics. 1995;29(1):70–9.

    Article  PubMed  CAS  Google Scholar 

  47. More DA, Kumar A. SRSF3: newly discovered functions and roles in human health and diseases. Eur J Cell Biol. 2020;99(6):151099.

    Article  PubMed  CAS  Google Scholar 

  48. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26(3):374–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lin JC, Lee YC, Liang YC, Fann YC, Johnson KR, Lin YJ. The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells. Sci Rep. 2017;7:44204.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tan M, Schaffalitzky de Muckadell OB, Joergensen MT. Gene expression network analysis of precursor lesions in familial pancreatic cancer. J Pancreat Cancer. 2020;6(1):73–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Scientific Research Foundation of Kocaeli University (Project Number: TYL-2020-2239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Kanli.

Ethics declarations

Conflict of interest

The authors declare that are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saglam, B.S., Kanli, A., Yanar, S. et al. Investigation of the effect of meclofenamic acid on the proteome of LNCaP cells reveals changes in alternative polyadenylation and splicing machinery. Med Oncol 39, 190 (2022). https://doi.org/10.1007/s12032-022-01795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01795-9

Keywords