Skip to main content

Advertisement

Log in

The inhibitory effect of betulinic acid on epithelial–mesenchymal transition pathway in renal cell carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Renal cancer is the most lethal urological cancer and characterized by high metastasis rate at initial diagnosis and drug resistance to current chemotherapeutics. Betulinic acid is a pentacyclic triterpene with broad biological activity that occurs naturally in variety of plants. Even though the anti-cancer efficacy of betulinic acid have been reported by many studies, the information about the pathways and the molecules which are affected by betulinic acid in renal cancer are limited. Epithelial–mesenchymal transition (EMT) is considered as the initial step of metastasis and contributes to drug resistance of cancer cells. Depending on the role of EMT in cancer progression and drug resistance, targeting EMT may represent an effective strategy in this context. Therefore, we aimed to investigate the anti-metastatic effects of betulinic acid on renal cell carcinoma cells by evaluating two EMT markers, SNAIL-1, and SDC-2. Following the treatment of betulinic acid at determined doses by WST-1 cytotoxicity assay in our previous study, SDC-2 expression level was decreased in both cell lines. Additionally, in correlation with this result, we also found a reduction in SDC-2 and SNAIL-1 protein levels which are measured by ELISA. Furthermore, the migration and invasion capacities were suppressed by betulinic acid treatment in metastatic renal adenocarcinoma ACHN cells. Taken together, our findings indicate that betulinic acid may constitute a potential treatment approach for renal cancer with further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, Gore JL, Sun M, Wood C, Russo P. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  3. Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):2195.

    Article  Google Scholar 

  4. Linehan WM, Ricketts CJ. The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol. 2019;16(9):539–52.

    Article  CAS  Google Scholar 

  5. Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol. 2014;11(9):517–25.

    Article  Google Scholar 

  6. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349: g4797.

    Article  Google Scholar 

  7. Zeng Q, Zhang W, Li X, Lai J, Li Z. Bioinformatic identification of renal cell carcinoma microenvironment-associated biomarkers with therapeutic and prognostic value. Life Sci. 2020;243: 117273.

    Article  CAS  Google Scholar 

  8. Pontes O, Oliveira-Pinto S, Baltazar F, Costa M. Renal cell carcinoma therapy: current and new drug candidates. Drug Discov Today. 2022;27(1):304–14.

    Article  CAS  Google Scholar 

  9. Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240–55.

    Article  CAS  Google Scholar 

  10. Lou H, Li H, Zhang S, Lu H, Chen Q. A review on preparation of betulinic acid and its biological activities. Molecules. 2021;26(18):5583.

    Article  CAS  Google Scholar 

  11. Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep. 2016;14(5):4489–95.

    Article  CAS  Google Scholar 

  12. Kun-Liu, Wang JY, Zhang L, Pan YY, Chen XY, Yuan Y.(2020) Effects of betulinic acid on synovial inflammation in rats with collagen-induced arthritis. Int J Immunopathol Pharmacol.;34:2058738420945078.

  13. Kim KD, Jung HY, Ryu HG, Kim B, Jeon J, Yoo HY, Park CH, Choi BH, Hyun CK, Kim KT, et al. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutr Metab Cardiovasc Dis. 2019;29(4):409–20.

    Article  CAS  Google Scholar 

  14. Musayeva A, Unkrig JC, Zhutdieva MB, Manicam C, Ruan Y, Laspas P, Chronopoulos P, Göbel ML, Pfeiffer N, Brochhausen C, et al. Betulinic Acid Protects from ischemia-reperfusion injury in the mouse retina. Cells. 2021;10(9):2440.

    Article  CAS  Google Scholar 

  15. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995;1(10):1046–51.

    Article  CAS  Google Scholar 

  16. Zhang Y, He N, Zhou X, Wang F, Cai H, Huang SH, Chen X, Hu Z, Jin X. Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells. Aging (Albany NY). 2021;13(17):21251–67.

    Article  CAS  Google Scholar 

  17. Zeng A, Hua H, Liu L, Zhao J. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorg Med Chem. 2019;27(12):2546–52.

    Article  CAS  Google Scholar 

  18. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.

    Article  Google Scholar 

  19. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article  CAS  Google Scholar 

  21. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.

    Article  CAS  Google Scholar 

  22. Hua R, Yu J, Yan X, Ni Q, Zhi X, Li X, Jiang B, Zhu J. Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. Biomed Pharmacother. 2020;121: 109630.

    Article  CAS  Google Scholar 

  23. Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM, Tzanakakis GN. Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life. 2017;69(11):824–33.

    Article  CAS  Google Scholar 

  24. Ergen A, Iplik ES, Ertugrul B, Atas MN, Kasarci G, Cakmakoglu B. Examination of the apoptotic effects of betulinic acid on renal cancer cell lines. Marmara Medical Journal. 2021;33(3):113–8.

    Google Scholar 

  25. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem. 1998;273(51):33942–8.

    Article  CAS  Google Scholar 

  26. Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017;40(6):1669–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shankar E, Zhang A, Franco D, Gupta S. Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways. Molecules. 2017;22(2):264.

    Article  Google Scholar 

  28. Shin J, Lee HJ, Jung DB, Jung JH, Lee HJ, Lee EO, Lee SG, Shim BS, Choi SH, Ko SG, et al. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS ONE. 2011;6(6): e21492.

    Article  CAS  Google Scholar 

  29. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19(5):518–29.

    Article  CAS  Google Scholar 

  30. Rasti A, Madjd Z, Abolhasani M, Mehrazma M, Janani L, Saeednejad Zanjani L, Asgari M. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma. Clin Exp Med. 2018;18(2):177–90.

    Article  CAS  Google Scholar 

  31. Xu H, Xu WH, Ren F, Wang J, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL, Ye DW. Prognostic value of epithelial-mesenchymal transition markers in clear cell renal cell carcinoma. Aging (Albany NY). 2020;12(1):866–83.

    Article  CAS  Google Scholar 

  32. Işeri OD, Kars MD, Arpaci F, Atalay C, Pak I, Gündüz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomed Pharmacother. 2011;65(1):40–5.

    Article  Google Scholar 

  33. Ma JL, Zeng S, Zhang Y, Deng GL, Shen H. Epithelial-mesenchymal transition plays a critical role in drug resistance of hepatocellular carcinoma cells to oxaliplatin. Tumour Biol. 2016;37(5):6177–84.

    Article  CAS  Google Scholar 

  34. Popović A, Demirović A, Spajić B, Stimac G, Kruslin B, Tomas D. Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostatic Dis. 2010;13(1):78–82.

    Article  Google Scholar 

  35. Wang J, Lu C, Chen J, Chen X, Wang S, Lu X, Tang X. Expression of Syndecan-2 in gastric adenocarcinoma and its effect on tumorigenesis in vitro. Transl Cancer Res. 2017. https://doi.org/10.21037/tcr.2017.08.04.

    Article  Google Scholar 

  36. Jang B, Jung H, Chung H, Moon BI, Oh ES. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells. Biochem Biophys Res Commun. 2016;477(1):47–53.

    Article  CAS  Google Scholar 

  37. Sun L, Cao J, Chen K, Cheng L, Zhou C, Yan B, Qian W, Li J, Duan W, Ma J, et al. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int J Oncol. 2019;54(1):98–110.

    CAS  PubMed  Google Scholar 

  38. Kim SY, Hwangbo H, Kim MY, Ji SY, Kim DH, Lee H, Kim GY, Moon SK, Leem SH, Yun SJ, et al. Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules. 2021;26(5):1381.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Scientific Research Projects Coordination Unit of Istanbul University. Project No. TSA-2019–35150.

Author information

Authors and Affiliations

Authors

Contributions

MNA; Laboratory Analysis and Writing, BE; Laboratory Analysis, ESİ; Statistical Analysis, BÇ; Data Extraction, AE; Study Design and Writing.

Corresponding author

Correspondence to Arzu Ergen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataş, M.N., Ertuğrul, B., İplik, E.S. et al. The inhibitory effect of betulinic acid on epithelial–mesenchymal transition pathway in renal cell carcinoma. Med Oncol 39, 170 (2022). https://doi.org/10.1007/s12032-022-01775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01775-z

Keywords

Navigation