Skip to main content

Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is the sixth most common type of cancer in the world. It is the third leading cause of cancer-related mortality. In more than 80% of people liver cancer-related death is due to its poor prognosis. The flavonoids obtained from natural sources have potent therapeutic effects on HCC. The flavonoid rich methanolic fraction obtained from ethyl acetate extract of leaf of Cestrum nocturnum (MFLCN) was analyzed by UPLC-QTOFMS/MS for the presence of different flavonoids. The physiochemical and pharmacokinetics properties of the identified flavonoids were performed by absorption, distribution, metabolism, excretion, and toxicity (ADMET). It was selected on the basis of Lipinski rule and hepatotoxicity evaluations. The potential gene dataset of HCC were taken from gene card database and targets compounds were selected from target net prediction. Gene ontology and pathway enrichment analysis of HCC was performed via enricher and David web tools. Cytoscape was used to visualize targets and network pathways. MFLCN contains 33 flavonoids. Among these flavonoids, apigenin was selected as principal active compound on the basis of their pharmacokinetic and ADMET properties. Apigenin has 92 targets out of 627 total targets related to HCC, while there was13 pathways in the target-pathway network. Results revealed that apigenin regulates cell proliferation and survival, primarily through different signaling pathways like estrogen, VEGF, PI3K/AKT1, TNF, FoXO, and Ras signaling pathways. Thus, integrating network pharmacology prediction with m-RNA and human protein atlas validation could be an effective method for understanding the molecular mechanism of apigenin on HCC.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data that support the findings of this study are available from public databases.

References

  1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):1–28.

    Article  Google Scholar 

  2. Cucchetti A, Zhong J, Berhane S, Toyoda H, Shi KQ, Tada T, et al. The chances of hepatic resection curing hepatocellular carcinoma. J Hepatol. 2020;72(4):711–7.

    Article  PubMed  Google Scholar 

  3. Al-Reza SM, Rahman A, Ahmed Y, Kang SC. Inhibition of plant pathogen in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pestic Biochem Physiol. 2010;96(2):86–92.

    Article  CAS  Google Scholar 

  4. Mimaki Y, Watanabe K, Ando Y, Sakuma C, Sashida Y, Furuya S, et al. Flavonol glycosides and steroidal saponins from the leaves of Cestrum nocturnum and their cytotoxictiy. J Nat Prod. 2001;64(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  5. Qadir MI, Murad MSA, Ali M, Saleem M, Farooq AA. Hepatoprotective effect of leaves of aqueous ethanol extract of Cestrum nocturum against paracetamol-induced hepatotoxcity. Bangladesh J Pharmacol. 2014;9(2):167–70.

    Google Scholar 

  6. Wu DP, Lin TY, Lv JY, Chen WY, Bai LR, Zhou Y, et al. Cestrum nocturnum flower extracts attenuate proliferation and induce apoptosis in malignant cells through inducing DNA damage and inducing topoisomerase II activity. Evid Based Complementary Altern Med. 2017;2017(2017):1–8.

    Google Scholar 

  7. Buchbauer G, Jirovetz L. Volatiles of the absolute of Cestrum nocturnum L. J Essent Oil Res. 1995;7(1):5–8.

    Article  CAS  Google Scholar 

  8. Ahmad VU, Baqai FT, Fatima T, Ahmad R. A spirostanol glycoside from Cestrum nocturnum. Phytochemistry. 1991;30:3057–306.

    Article  CAS  PubMed  Google Scholar 

  9. Sahai M, Singh M, Singh AK, Hara N, Fujimoto Y. Cestemosides A and B, novel glucosides from the leaves of Cestrum nocturmum. J Chem Res. 1994;1:22–3.

    Google Scholar 

  10. Ahmad VU, Baqai FT, Ahmad R. A Diosgenin tetrasaccharide from Cestrum nocturnum. Z Naturforsch. 1995;50:1104–10.

    Article  CAS  Google Scholar 

  11. Valencia-Mejía E, Leon-Wilchez YY, Monribot-Villanueva JL, Ramirez-Vazquez M, Bonilla-Landa I, Guerrero-Analco JA. Isolation and identification of pennogenin tetraglycoside from Cestrum nocturnum (Solanaceae) and Its antifungal activity against Fusarium kuroshium, causal agent of Fusarium Dieback. Molecules. 2022;27(6):1860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Madunic J, Gajski G, Popic J, Garaj-Vrhovac V. Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018;28(413):11–22.

    Article  CAS  Google Scholar 

  13. Aldawsari MF, Ahmed MM, Fatima F, Anwer MK, Katakam P, Khan A. Development and characterization of calcium-alginate beads of apigenin: in vitro antitumor, antibacterial, and antioxidant activities. Mar Drugs. 2021;19(8):1–16.

    Article  CAS  Google Scholar 

  14. Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res Genet Toxicol Environ Mutagen. 2021;866:503352.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76(12):1367–79.

    Article  CAS  PubMed  Google Scholar 

  16. Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  17. Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel). 2019;8(2):35.

    Article  PubMed Central  CAS  Google Scholar 

  18. Hu XY, Liang JY, Guo XJ, Liu L, Guo YB. Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (DeltaPsim)-mediated apoptosis in hepatocellular carcinoma. Clin Exp Pharma. 2015;42(2):146–53.

    Article  CAS  Google Scholar 

  19. Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics. 2009;25(19):2466–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;29(5):e47.

    Article  CAS  Google Scholar 

  21. Rawat D, Shrivastava S, Ahmad R, Koiri RK. An overview of natural plant products in the treatment of hepatocellular carcinoma. Med Chem. 2018;18(13):1838–59.

    CAS  Google Scholar 

  22. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287(4):914–20.

    Article  CAS  PubMed  Google Scholar 

  23. Sato F, Matsukawa Y, Matsumoto K, Nishino H, Sakai T. Apigenin induces morphological differentiation and G2-M arrest in rat neuronal cells. Biochem Biophys Res Commun. 1994;204(2):578–84.

    Article  CAS  PubMed  Google Scholar 

  24. Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol. 2005;26(1):185–9.

    CAS  PubMed  Google Scholar 

  25. Czeczot H, Tudek B, Kusztelak J, Szymczyk T, Dobrowolska B, Glinkowska G, et al. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat Res. 1990;240(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  26. MacGregor JT. Mutagenic and carcinogenic effects of flavonoids, in plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships. New York: A.R. Liss; 1986.

    Google Scholar 

  27. Sung B, Chung HY, Kim ND. Role of apigenin in cancer prevention via induction of apoptosis and autophagy. J Cancer Prev. 2016;21(4):216–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim TW, Lee HG. Apigenin induces autophagy and cell death by targeting EZH2 under hypoxia conditions in gastric cancer cells. Int J Mol Sci. 2021;22(24):13455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. An L, Lin Y, Li L, Kong M, Lou Y, Wu J, Liu Z. Integrating network pharmacology and experimental validation to investigate the effects and mechanism of Astragalus flavonoids against hepatic fibrosis. Front Pharmacol. 2021;11:1–17.

    Article  CAS  Google Scholar 

  30. Berasain C, Ujue Latasa M, Urtasun R, Goni S, Elizalde M, Garcia-Irigoyen O, et al. Epidermal growth factor receptor (EGFR) crosstalks in liver cancer. Cancers (Basel). 2011;3(2):2444–61.

    Article  CAS  Google Scholar 

  31. Komposch K, Sibilia M. EGFR signaling in liver diseases. Int J Mol Sci. 2016;17(1):1–31.

    Google Scholar 

  32. Hishida M, Nomoto S, Inokawa Y, Hayashi M, Kanda M, et al. Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma combination array analysis. Int J Oncol. 2013;43(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  33. Ren H, Fang J, Ding X, Chen Q. Role and inhibition of SRC signaling in the progression of liver cancer. Open Life Sci. 2016;11(1):513–8.

    Article  CAS  Google Scholar 

  34. Mroweh M, Roth G, Decaens T, Marche PN, Lerat H, MacekJílkova Z. Targeting Akt in hepatocellular carcinoma and its tumor microenvironment. Int J Mol Sci. 2021;22(4):1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Z, Xu M, Liu P, Zhang S, Shang R, Qiao Y, Che L, Ribback S, Cigliano A, Evert K, et al. The mTORC2-Akt1 cascade is crucial for c-Myc to promote hepato carcinogenesis in mice and humans. Hepatology. 2019;70:1600–13.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao JX, Yuan YW, Cai CF, Shen DY, Chen ML, Ye F, et al. Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis. Oncotarget. 2017;8:66987–7000.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen J, Liang J, Liu S, Song S, Guo W, Shen F. Differential regulation of AKT1 contributes to survival and proliferation in hepatocellular carcinoma cells by mediating Notch1 expression. Oncol Lett. 2018;15(5):6857–64.

    PubMed  PubMed Central  Google Scholar 

  38. Moeini A, Cornell H, Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer. 2012;1(2):83–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen R, Cui J, Xu C, Xue T, Guo K, Gao D, et al. The significance of MMP-9 over MMP-2 in HCC invasiveness and recurrence of hepatocellular carcinoma after curative resection. Ann Surg Oncol. 2011;19:375–84.

    Article  Google Scholar 

  40. Ngo MHT, Jeng HY, Kuo YC, Diony Nanda JD, Brahmadhi A, Ling TY, et al. The Role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci. 2021;22:1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. PNAS. 1993;90(16):7533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanda T, Yokosuka O. The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma. 2015;2:91–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen HN, Chen Y, Zhou ZG, Wei Y, Huang C. A novel role for ketoconazole in hepatocellular carcinoma treatment: linking PTGS2 to mitophagy machinery. Autophagy. 2019;15(4):733–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Wang X, Yang J, Zhao S, Liu T, Wang L. Identification of hub genes in hepatocellular carcinoma Related to progression and prognosis by weighted gene co-expression network analysis. Med Sci Monit. 2020;26:e920854.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Joshi SB, Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano. 2020;14(4):4444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author Pradeep Kumar gratefully acknowledged to UGC, New Delhi (F-1-17-1/2014-15/RGNF-2014-15-SC-UTT-58260) for financial support as a JRF and SRF. Author Kavindra Nath Tiwari acknowledges to Institute of Eminence (IoE) Banaras Hindu University, Varanasi, India for financial support for research work (Scheme No.6031).

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KNT and SKM: developed the concept and design of work, PK and AKS: Data collection, analysis and interpretation of results, PV: fractionation and manuscript preparation.

Corresponding author

Correspondence to Kavindra Nath Tiwari.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

This study does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2588 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, A.K., Verma, P. et al. Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma. Med Oncol 39, 155 (2022). https://doi.org/10.1007/s12032-022-01759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01759-z

Keywords

  • Hepatocellular carcinoma (HCC)
  • UPLC-QTOFMS/MS
  • Hub gene
  • ADMET
  • MFLCN