Skip to main content

Advertisement

Log in

Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Gene editing interference technology has been flourishing for more than 30 years. It has always been a common means to interfere with the expression of particular genes. Today it has shown a broad application prospect in clinical treatment, especially in adenocarcinoma treatment. In just a few years, the CRISPRi technology has attracted much z attention with its precise targeting and convenient operability significantly promoted the transformation from bench to bedside, and won the Nobel Prize in Chemistry 2020. In recent years, the importance of non-coding RNA has led LncRNA research to the center. At the same time, it also recalls the surprises obtained in laboratory and clinic research by RNAi technologies such as microRNA, siRNA, and shRNA at the beginning of the century. Therefore, this article focuses on CRISPRi, RNAi, and LncRNA to review their gene interference mechanisms currently expected to be translational research. Their applications and differences in adenocarcinoma research will also be described powerfully. It will provide a helpful reference for scientists to understand better and apply several RNA interference technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Nakhaie M, Charostad J, Kaydani GA, Faghihloo E. The role of viruses in adenocarcinoma development. Infect Genet Evol. 2020;86: 104603.

    Article  CAS  PubMed  Google Scholar 

  2. Mejia I, Bodapati S, Chen KT, Diaz B. Pancreatic adenocarcinoma invasiveness and the tumor microenvironment: from biology to clinical trials. Biomedicines. 2020;8(10):401.

    Article  CAS  PubMed Central  Google Scholar 

  3. Arai T, Matsuda Y, Aida J, Takubo K, Ishiwata T. Solid-type poorly differentiated adenocarcinoma of the stomach: clinicopathological and molecular characteristics and histogenesis. Gastric Cancer. 2019;22(2):314–22.

    Article  CAS  PubMed  Google Scholar 

  4. de Oliveira G, Freire PP, Cury SS, de Moraes D, Oliveira JS, Dal-Pai-Silva M, et al. An integrated meta-analysis of secretome and proteome identify potential biomarkers of pancreatic ductal adenocarcinoma. Cancers (Basel). 2020;12(3):716.

    Article  CAS  Google Scholar 

  5. Jung G, Hernandez-Illan E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol. 2020;17(2):111–30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Zhang R, Ying K. Long noncoding RNAs: novel links in respiratory diseases (review). Mol Med Rep. 2015;11(6):4025–31.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 2016;7(29):46545–56.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liang J, Li Y, Daniels G, Sfanos K, De Marzo A, Wei J, et al. LEF1 Targeting EMT in prostate cancer invasion is regulated by miR-34a. Mol Cancer Res. 2015;13(4):681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bogorad RL, Yin H, Zeigerer A, Nonaka H, Ruda VM, Zerial M, et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat Commun. 2014. https://doi.org/10.1038/ncomms4869.

    Article  PubMed  Google Scholar 

  11. Hong S-S, Zhang M-X, Zhang M, Yu Y, Chen J, Zhang X-Y, et al. Follicle-stimulating hormone peptide-conjugated nanoparticles for targeted shRNA delivery lead to effective gro-α silencing and antitumor activity against ovarian cancer. Drug Delivery. 2018;25(1):576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung HS, Rajasekaran N, Song SY, Kim YD, Hong S, Choi HJ, et al. Human papillomavirus E6/E7-specific siRNA potentiates the effect of radiotherapy for cervical cancer in vitro and in vivo. Int J Mol Sci. 2015;16(6):12243–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732–40.

    Article  CAS  PubMed  Google Scholar 

  14. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2014;141(1):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.

    Article  CAS  PubMed  Google Scholar 

  18. Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods. 2016;103:157–66.

    Article  CAS  PubMed  Google Scholar 

  19. Saw PE, Song E-W. siRNA therapeutics: a clinical reality. Sci China Life sci. 2020;63(4):485–500.

    Article  CAS  PubMed  Google Scholar 

  20. Ansari KI, Mishra BP, Mandal SS. MLL histone methylases in gene expression, hormone signaling and cell cycle. Front biosci (Landmark Ed). 2009;14:3483–95.

    Article  CAS  Google Scholar 

  21. Cho S, Shin J, Cho B-K. Applications of CRISPR/Cas System to bacterial metabolic engineering. Int J Mol Sci. 2018;19(4):1089.

    Article  PubMed Central  CAS  Google Scholar 

  22. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8(11):2180–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ. Krüppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA. 1994;91(10):4509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 2010;6(3): e1000869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539(7630):479.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Dai L, Wang Y, Deng J, Lin Y, Wang Q, et al. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett. 2019;448:132–43.

    Article  CAS  PubMed  Google Scholar 

  29. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.

    Article  CAS  PubMed  Google Scholar 

  30. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  31. Small EM, Frost RJA, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121(8):1022–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  33. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.

    Article  CAS  PubMed  Google Scholar 

  34. Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 2013;3(11):1302–15.

    Article  CAS  PubMed  Google Scholar 

  35. Zou X, Wei J, Huang Z, Zhou X, Lu Z, Zhu W, et al. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med. 2019;8(6):2810–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35(2):180–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  PubMed  Google Scholar 

  38. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.

    Article  CAS  PubMed  Google Scholar 

  39. Stauffer JK, Scarzello AJ, Andersen JB, De Kluyver RL, Back TC, Weiss JM, et al. Coactivation of AKT and -catenin in mice rapidly induces formation of lipogenic liver tumors. Can Res. 2011;71(7):2718–27.

    Article  CAS  Google Scholar 

  40. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA. 2007;104(37):14771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Gao F, Jiang X, Zhao X, Wang Y, Kuai Q, et al. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer. J Biomed Nanotechnol. 2019;15(5):966–78.

    Article  CAS  PubMed  Google Scholar 

  42. Gu W, Putral L, McMillan N. siRNA and shRNA as anticancer agents in a cervical cancer model. Methods Mol Biol. 2008;442:159–72.

    Article  CAS  PubMed  Google Scholar 

  43. Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009;61(9):746–59.

    Article  CAS  PubMed  Google Scholar 

  44. Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. Mater Sci Eng C Mater Biol Appl. 2019. https://doi.org/10.1016/j.msec.2019.109928.

    Article  PubMed  Google Scholar 

  45. Fellmann C, Lowe SW. Stable RNA interference rules for silencing. Nat Cell Biol. 2014;16(1):10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang Y-S, Jie N, Zhang Y-X, Zou K-J, Weng Y. shRNA-induced silencing of Ras-related C3 botulinum toxin substrate 1 inhibits the proliferation of colon cancer cells through upregulation of BAD and downregulation of cyclin D1. Int J Mol Med. 2018;41(3):1397–408.

    CAS  PubMed  Google Scholar 

  47. Oh J, Barve M, Matthews CM, Koon EC, Heffernan TP, Fine B, et al. Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol Oncol. 2016;143(3):504–10.

    Article  CAS  PubMed  Google Scholar 

  48. Wilusz JE. Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochem Biophys Acta. 2016;1859(1):128–38.

    CAS  PubMed  Google Scholar 

  49. Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 2020;254: 116900.

    Article  CAS  PubMed  Google Scholar 

  50. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  51. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  52. Chen L-L. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.

    Article  CAS  PubMed  Google Scholar 

  53. Fenoglio C, Ridolfi E, Galimberti D, Scarpini E. An emerging role for long non-coding RNA dysregulation in neurological disorders. Int J Mol Sci. 2013;14(10):20427–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–50.

    Article  CAS  PubMed  Google Scholar 

  55. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhan A, Mandal SS. LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochem Biophys Acta. 2015;1856(1):151–64.

    CAS  PubMed  Google Scholar 

  57. Chao P, Yongheng F, Jin Z, Yu Z, Shiyong Y, Kunxing Y, et al. lncRNA HOTAIR knockdown suppresses gastric cancer cell biological activities. Food Sci Nutr. 2021;9(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  58. Lu R, Zhang J, Zhang W, Huang Y, Wang N, Zhang Q, et al. Circulating HOTAIR expression predicts the clinical response to neoadjuvant chemotherapy in patients with breast cancer. Cancer Biomark. 2018;22(2):249–56.

    Article  PubMed  CAS  Google Scholar 

  59. Xing J, Liu H, Jiang W, Wang L. LncRNA-Encoded Peptide: functions and predicting methods. Front Oncol. 2020;10: 622294.

    Article  PubMed  Google Scholar 

  60. Yin X, Jing Y, Xu H. Mining for missed sORF-encoded peptides. Expert Rev Proteomics. 2019;16(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  61. Huang JZ, Chen M, Chen Gao XC, Zhu S, Huang H, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 2017;68(1):171-184.e6.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 2013;23(3):340–50.

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Sun D, Zhao T, Zhang Z. Long non-coding RNA ROR confers arsenic trioxide resistance to HepG2 cells by inhibiting p53 expression. Eur J Pharmacol. 2020;872: 172982.

    Article  CAS  PubMed  Google Scholar 

  64. Ren C-C, Yang L, Liu L, Chen Y-N, Cheng G-M, Zhang X-A, et al. Effects of shRNA-mediated silencing of PSMA7 on cell proliferation and vascular endothelial growth factor expression via the ubiquitin-proteasome pathway in cervical cancer. J Cell Physiol. 2019;234(5):5851–62.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Cheng X, Liang H, Jin Z. Long non-coding RNA HOTAIR and STAT3 synergistically regulate the cervical cancer cell migration and invasion. Chem Biol Interact. 2018;286:106–10.

    Article  CAS  PubMed  Google Scholar 

  66. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell. 2017;66(3):373-383.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 2017;45(3): e12.

    PubMed  Google Scholar 

  70. Cao S, Lin C, Li X, Liang Y, Saw PE. TME-responsive multistage nanoplatform for siRNA delivery and effective cancer therapy. Int J Nanomedicine. 2021;16:5909–21.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tian Z, Liang G, Cui K, Liang Y, Wang Q, Lv S, et al. Insight into the prospects for RNAi therapy of cancer. Front Pharmacol. 2021;12: 644718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–44.

    Article  CAS  PubMed  Google Scholar 

  73. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang T, Shigdar S, Shamaileh HA, Gantier MP, Yin W, Xiang D, et al. Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett. 2017;387:77–83.

    Article  CAS  PubMed  Google Scholar 

  75. Setten RL, Rossi JJ, Han S-P. Publisher Correction: the current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discovery. 2020;19(4):291.

    Article  CAS  PubMed  Google Scholar 

  76. Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, et al. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal. 2021;206: 114368.

    Article  CAS  PubMed  Google Scholar 

  77. Bobbin ML, Rossi JJ. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol. 2016;56:103–22.

    Article  CAS  PubMed  Google Scholar 

  78. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  82. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3): e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Selleri L, Bartolomei MS, Bickmore WA, He L, Stubbs L, Reik W, et al. A hox-embedded long noncoding RNA: is it all hot air? PLoS Genet. 2016;12(12): e1006485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Smekalova EM, Kotelevtsev YV, Leboeuf D, Shcherbinina EY, Fefilova AS, Zatsepin TS, et al. lncRNA in the liver: prospects for fundamental research and therapy by RNA interference. Biochimie. 2016;131:159–72.

    Article  CAS  PubMed  Google Scholar 

  85. Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B. 2021;11(2):340–54.

    Article  CAS  PubMed  Google Scholar 

  86. Fitzpatrick C, Bendek MF, Briones M, Farfan N, Silva VA, Nardocci G, et al. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis. 2019;10(6):423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhen S, Li X. Application of CRISPR-Cas9 for long noncoding RNA genes in cancer research. Hum Gene Ther. 2019;30(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  88. Chang L, Wang G, Jia T, Zhang L, Li Y, Han Y, et al. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget. 2016;7(17):23988–4004.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yu Y, Zhang W, Li A, Chen Y, Ou Q, He Z, et al. Association of long noncoding RNA biomarkers with clinical immune subtype and prediction of immunotherapy response in patients with cancer. JAMA Netw Open. 2020;3(4): e202149.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  91. Jin X, Simmons SK, Guo A, Shetty AS, Ko M, Nguyen L, et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science. 2020;370(6520):eaaz6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors wish to acknowledge the support of The National Natural Science Foundation of China under Award Number 81572566, Natural Science Foundation of Guangdong Province under Award Number 2015A030310046 and 2016A030313674, Research Foundation Project of Guangdong Medical University under Award Number Z2015004 and Z2017005, Science and Technology Planning Project of Guangdong Province under Award Number 2016A020215224, Science and Technology Planning Project of Dongguan City under Award Number 2016108101028.

Author information

Authors and Affiliations

Authors

Contributions

YZ and XH: initiated and supervised the study and revised the final manuscript. TW and YH: preformed the study and wrote the paper. All of the authors have read and approved the final paper.

Corresponding authors

Correspondence to Xinrong Hu or Yi Zhao.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethical approval

Not applicable.

Consent for publication

All authors consent to the publication.

Consent to participate

All authors consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yao, Y., Hu, X. et al. Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. Med Oncol 39, 148 (2022). https://doi.org/10.1007/s12032-022-01727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01727-7

Keywords

Navigation