Skip to main content

Advertisement

Log in

Inhibition of noncaspase proteases, calpain and proteasome, via ALLN and Bortezomib contributes to cell death through low degradation of pro-/anti-apoptotic proteins and apoptosis induction

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Dysfunction at any regulatory point along the apoptotic signaling pathway is closely related to many diseases including cancers. The apoptotic protein expression level is an important cause of cancer-related death, and the correct degradation of apoptotic proteins is involved in tumor development. Therefore, understanding of a regulatory point that underlying cancer-related death may help the development of new strategies to overcome the clinical challenges. Here, proteasome inhibitor Bortezomib and calpain inhibitor ALLN were examined on protein levels of caspase-3, caspase-9, XIAP, and E3-ligase PARC in HEK293T cells overexpressing XIAP and caspase-9. ATP depletion and caspase-3 activation were as a consequence of Bortezomib and ALLN function. Higher numbers of PI-stained cells provided evidence of cell death by both inhibitors. Western blotting analysis showed that both ALLN and Bortezomib equally inhibited degradation of XIAP, but only ALLN was effective at inhibiting caspase proteolytic degradation. Moreover, treatment of cells with both types of inhibitors significantly increased the level of E3-ligase PARC. Our findings showed that inhibition of proteasome and calpains enhanced the level of anti-apoptotic, XIAP and PARC, and pro-apoptotic, caspase-9 and 3 proteins, which totally promote cell death significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000. https://doi.org/10.1016/s0002-9440(10)64779-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407(6805):796–801.

    Article  CAS  Google Scholar 

  3. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. J Leukoc Biol. 1996;59(6):775–83.

    Article  CAS  Google Scholar 

  4. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001. https://doi.org/10.1038/35065125.

    Article  PubMed  Google Scholar 

  5. Shiraki K, Sugimoto K, Yamanaka Y, et al. Overexpression of X-linked inhibitor of apoptosis in human hepatocellular carcinoma. Int J Mol Med. 2003. https://doi.org/10.3892/ijmm.12.5.705.

    Article  PubMed  Google Scholar 

  6. Tan Y, Wu C, De Veyra T, Greer PA. Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J Biol Chem. 2006. https://doi.org/10.1074/jbc.M601978200.

    Article  PubMed  Google Scholar 

  7. Ciechanover A. The ubiquitin-proteasome pathway: On protein death and cell life. EMBO J. 1998;17(24):7151–60.

    Article  CAS  Google Scholar 

  8. Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal. 2011;14(7):417–33.

    Google Scholar 

  9. Lopes UG, Erhardt P, Yao R, Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem. 1997. https://doi.org/10.1074/jbc.272.20.12893.

    Article  PubMed  Google Scholar 

  10. Concannon CG, Koehler BF, Reimertz C, et al. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene. 2007. https://doi.org/10.1038/sj.onc.1209974.

    Article  PubMed  Google Scholar 

  11. Imajohohmi S, Kawaguchi T, Sugiyama S, et al. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun. 1995. https://doi.org/10.1006/bbrc.1995.2878.

    Article  Google Scholar 

  12. Daniel KG, Chen D, Orlu S, et al. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res. 2005. https://doi.org/10.1186/bcr1322.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hideshima T, Hideshima T, Richardson P, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001;61(7):3071–6.

    CAS  PubMed  Google Scholar 

  14. Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011. https://doi.org/10.2174/156800911794519752.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frankland-Searby S. Bhaumik SR (2012) The 26S proteasome complex: an attractive target for cancer therapy. Biochim Biophys Acta. 1825;1:64–76.

    Google Scholar 

  16. Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J. 1997;328(3):721–32.

    Article  CAS  Google Scholar 

  17. Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res. 2012;96(1):32–7.

    Article  CAS  Google Scholar 

  18. Chua BT, Guo K, Li P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem. 2000. https://doi.org/10.1074/jbc.275.7.5131.

    Article  PubMed  Google Scholar 

  19. Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem. 1998. https://doi.org/10.1074/jbc.273.46.30530.

    Article  PubMed  Google Scholar 

  20. Smith IJ, Dodd SL. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp Physiol. 2007. https://doi.org/10.1113/expphysiol.2006.035790.

    Article  PubMed  Google Scholar 

  21. Call JA, Eckhardt SG, Camidge DR. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol. 2008;9(10):1002–11.

    Article  CAS  Google Scholar 

  22. Diepstraten ST, Anderson MA, Czabotar PE, et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22(1):45–64.

    Article  CAS  Google Scholar 

  23. Mehdizadeh K, Ataei F, Hosseinkhani S. Treating MCF7 breast cancer cell with proteasome inhibitor Bortezomib restores apoptotic factors and sensitizes cell to Docetaxel. Med Oncol. 2021. https://doi.org/10.1007/s12032-021-01509-7.

    Article  PubMed  Google Scholar 

  24. Li G, Iyengar R. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/β-catenin-regulated cell proliferation. Proc Natl Acad Sci USA. 2002. https://doi.org/10.1073/pnas.202355799.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choosakoonkriang S, Lobo BA, Koe GS, et al. Biophysical characterization of PEI/DNA complexes. J Pharm Sci. 2003. https://doi.org/10.1002/jps.10437.

    Article  PubMed  Google Scholar 

  26. Torkzadeh-Mahani M, Ataei F, Nikkhah M, Hosseinkhani S. Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis. Biosens Bioelectron. 2012. https://doi.org/10.1016/j.bios.2012.06.034.

    Article  PubMed  Google Scholar 

  27. Ataei F, Torkzadeh-Mahani M, Hosseinkhani S. A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay. Biosens Bioelectron. 2013. https://doi.org/10.1016/j.bios.2012.09.037.

    Article  PubMed  Google Scholar 

  28. Salehi-Sedeh H, Ataei F, Jarchi S, et al. Effect of mutation at positively charged residues (K329 and R330) in a flexible region of firefly luciferase on structure and kinetic properties. Enzyme Microb Technol. 2019. https://doi.org/10.1016/j.enzmictec.2019.109424.

    Article  PubMed  Google Scholar 

  29. Krämer CEM, Wiechert W, Kohlheyer D. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep. 2016. https://doi.org/10.1038/srep32104.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mehdizadeh K, Ataei F, Hosseinkhani S. Effects of doxorubicin and docetaxel on susceptibility to apoptosis in high expression level of survivin in HEK and HEK-S cell lines as in vitro models. Biochem Biophys Res Commun. 2020. https://doi.org/10.1016/j.bbrc.2020.08.028.

    Article  PubMed  Google Scholar 

  31. Karimzadeh S, Hosseinkhani S, Fathi A, et al. Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis. Eur J Cell Biol. 2018. https://doi.org/10.1016/j.ejcb.2018.01.005.

    Article  PubMed  Google Scholar 

  32. Bakhshoudeh M, Mehdizadeh K, Hosseinkhani S, Ataei F. Upregulation of apoptotic protease activating factor-1 expression correlates with anti-tumor effect of taxane drug. Med Oncol. 2021. https://doi.org/10.1007/s12032-021-01532-8.

    Article  PubMed  Google Scholar 

  33. Bratton SB, Lewis J, Butterworth M, et al. XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ. 2002. https://doi.org/10.1038/sj.cdd.4401069.

    Article  PubMed  Google Scholar 

  34. Bader M, Steller H. Regulation of cell death by the ubiquitin-proteasome system. Curr Opin Cell Biol. 2009;21(6):878–84.

    Article  CAS  Google Scholar 

  35. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 1999;6(4):303–13.

    Article  CAS  Google Scholar 

  36. Deng J, Walther A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv Mater. 2020;32(42):2002629.

    Article  CAS  Google Scholar 

  37. Zamaraeva MV, Sabirov RZ, Maeno E, et al. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 2005. https://doi.org/10.1038/sj.cdd.4401661.

    Article  PubMed  Google Scholar 

  38. Zheng TS, Schlosser SF, Dao T, et al. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA. 1998. https://doi.org/10.1073/pnas.95.23.13618.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pei XH, Bai F, Li Z, et al. Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer Res. 2011. https://doi.org/10.1158/0008-5472.CAN-10-4300.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silke J, Hawkins CJ, Ekert PG, et al. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol. 2002. https://doi.org/10.1083/jcb.200108085.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roccaro AM, Vacca A, Ribatti D. Bortezomib in the treatment of cancer. Front Anti-Cancer Drug Discov. 2011.

  42. Bizat N, Hermel JM, Humbert S, et al. In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem. 2003. https://doi.org/10.1074/jbc.M305057200.

    Article  PubMed  Google Scholar 

  43. Wójcik C. Regulation of apoptosis by the ubiquitin and proteasome pathway. J Cell Mol Med 2002;6(1):25–48.

  44. Ozaki Y, Kato T, Kitagawa M, et al. Calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation protein kinase A and protein kinase A-mediated stabilization of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Arch Biochem Biophys. 2008. https://doi.org/10.1016/j.abb.2008.07.001.

    Article  PubMed  Google Scholar 

  45. Woo MG, Xue K, Liu J, et al. Calpain-mediated processing of p53-associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking. J Biol Chem. 2012. https://doi.org/10.1074/jbc.M111.314765.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the research council of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farangis Ataei.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Consent to participate

All authors agree to submit this article for publication.

Consent for publication

All authors agree with publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, R., Ataei, F. & Hosseinkhani, S. Inhibition of noncaspase proteases, calpain and proteasome, via ALLN and Bortezomib contributes to cell death through low degradation of pro-/anti-apoptotic proteins and apoptosis induction. Med Oncol 39, 125 (2022). https://doi.org/10.1007/s12032-022-01716-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01716-w

Keywords

Navigation