Skip to main content

Advertisement

Log in

E2F2 enhances the chemoresistance of pancreatic cancer to gemcitabine by regulating the cell cycle and upregulating the expression of RRM2

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Both pro-oncogenic and anti-oncogenic effects of E2F2 have been revealed in different malignancies. However, the precise role of E2F2 in pancreatic cancer, in particular in relation to therapeutic intervention with gemcitabine, remains unclear. In this study, the effect of E2F2 on the proliferation and cell cycle modulation of pancreatic cancer cells, and whether E2F2 plays a role in the treatment of pancreatic cancer cells by gemcitabine, were investigated. The expression of E2F2 in pancreatic cancer was assessed by various methods including bioinformatics prediction, Western blotting, and real-time PCR. The effect of E2F2 on the proliferation and cell cycling of pancreatic cancer cells was analyzed by tissue culture and flow cytometry. In addition, the effect of E2F2 on the intervention of pancreatic cancer by gemcitabine was investigated using both in vitro and in vivo approaches. The expression of E2F2 was found to be significantly increased in pancreatic cancer tissues and cell lines. The pathogenic capacity of E2F2 lied in the fact that this transcription factor promoted the transformation of pancreatic cancer cell cycle from G1-phase to S-phase, thus enhancing the proliferation of pancreatic cancer cells. Furthermore, the expression of E2F2 was increased in pancreatic cancer cells in the presence of gemcitabine, and the augmented expression of E2F2 upregulated the gemcitabine resistance-related gene RRM2 and its downstream signaling molecule deoxycytidine kinase (DCK). The resistance of pancreatic cancer cells to gemcitabine was confirmed using both in vitro and in vivo models. In this study, E2F2 has been demonstrated for the first time to play a pro-oncogenic role in pancreatic cancer by promoting the transition of the cell cycle from G1-phase to S-phase and, therefore, enhancing the proliferation of pancreatic cancer cells. E2F2 has also been demonstrated to enhance the chemotherapy resistance of pancreatic cancer cells to gemcitabine by upregulating the expression of RRM2 and DCK that is downstream of RRM2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Macgregor-Das AM, Iacobuzio-Donahue CA. Molecular pathways in pancreatic carcinogenesis. J Surg Oncol. 2013;107:8–14.

    Article  CAS  PubMed  Google Scholar 

  3. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. The Lancet. 2011;378:607–20.

    Article  Google Scholar 

  4. Manuel H. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17.

    Article  Google Scholar 

  5. Paez D, Labonte MJ, Lenz HJ. Pancreatic cancer: medical management (novel chemotherapeutics). Gastroenterol Clin North Am. 2012;41:189–209.

    Article  PubMed  Google Scholar 

  6. Brand RE, Tempero MA. Pancreatic cancer. Curr Opin Oncol. 1998;10(4):362–6.

    Article  CAS  PubMed  Google Scholar 

  7. Cavalcante LDS, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;741:8–16.

    Article  CAS  Google Scholar 

  8. Heinemann V, Xu YZ, Chubb S, et al. Cellular elimination of 2’,2’-difluorodeoxycytidine 5’-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992;52(3):533–9.

    CAS  PubMed  Google Scholar 

  9. Hertel LW, Boder GB, Kroin JS, et al. Evaluation of the antitumor activity of gemcitabine (2’,2’-difluoro-2’-deoxycytidine). Cancer Res. 1990;50(14):4417–22.

    CAS  PubMed  Google Scholar 

  10. Veltkamp SA, Beijnen JH, Schellens JH. Prolonged versus standard gemcitabine infusion: translation of molecular pharmacology to new treatment strategy. Oncologist. 2008;13:261–76.

    Article  CAS  PubMed  Google Scholar 

  11. Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updates. 2002;5(1):19–33.

    Article  CAS  Google Scholar 

  12. Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403–13. https://doi.org/10.1200/JCO.1997.15.6.2403.

    Article  CAS  PubMed  Google Scholar 

  13. Kleespies A, Jauch KW, Bruns CJ. Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist Updates. 2006;9(1–2):1–18.

    Article  CAS  Google Scholar 

  14. Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2001;15:267–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu N, Xiao L, Zhao X, et al. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett. 2012;586(21):3831–9.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Huang J, Yang D, Xiang S, Sun J, Li H, et al. Expression patterns of E2F transcription factors and their potential prognostic roles in breast cancer. Oncol Lett. 2018;15:9216–30.

    PubMed  PubMed Central  Google Scholar 

  17. Sun CC, Zhou Q, Hu W, Li SJ, Zhang F, Chen ZL, et al. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging. 2018;10:973–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen L, Cheng F, Zhou Y, Yin C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 2015;21:313–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong Q, Meng P, Wang T, Qin W, Qin W, Wang F, et al. MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS ONE. 2010;5:e10147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li T, Luo W, Liu K, Lv X, Xi T. miR-31 promotes proliferation of colon cancer cells by targeting E2F2. Biotechnol Lett. 2015;37:523–32.

    Article  CAS  PubMed  Google Scholar 

  21. Furuse J. Treatments for pancreatic cancer with oligometastasis. Gan to kagaku ryoho Cancer Chemother. 2017;44(10):827–30.

    Google Scholar 

  22. Benevolenskaya EV, Frolov MV. Emerging links between E2F control and mitochondrial function. Cancer Res. 2015;75:619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dick FA, Goodrich DW, Sage J, Dyson NJ. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 2018;18(7):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004;23:1539–48.

    Article  CAS  PubMed  Google Scholar 

  25. Bhutia YD, Hung SW, Krentz M, Patel D, Lovin D, Manoharan R, et al. Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS ONE. 2013;8:e53436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grolmusz VK, Karászi K, Micsik T, et al. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer. Am J Cancer Res. 2016;6(9):2041–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang N, Zhan T, Ke T, Huang X, Ke D, Wang Q, et al. Increased expression of RRM2 by human papillomavirus E7 oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer. 2014;110:1034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu Q, Qin Y, Xiang J, Liu W, Xu W, Sun Q, et al. dCK negatively regulates the NRF2/ARE axis and ROS production in pancreatic cancer. Cell Prolif. 2018;51:e12456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goan YG, Zhou B, Hu E, Mi S, Yen Y. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res. 1999;59(17):4204–7.

    CAS  PubMed  Google Scholar 

  30. Obama K, Kanai M, Kawai Y, Fukushima M, Takabayashi A. Role of retinoblastoma protein and E2F–1 transcription factor in the acquisition of 5-fluorouracil resistance by colon cancer cells. Int J Oncol. 2002;21(2):309–14.

    CAS  PubMed  Google Scholar 

  31. Yan LH, Wang XT, Yang J, et al. Reversal of multidrug resistance in gastric cancer cells by E2F–1 downregulation in vitro and in vivo. J Cell Biochem. 2014;115(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  32. Chu J, Zhu Y, Liu Y, et al. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter. Oncotarget. 2015;6(31):31944–57.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ivey-Hoyle M, Conroy R, Huber HE, Goodhart PJ, Oliff A, Heimbrook DC. Cloning and characterization of E2F–2, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol. 1993;13(12):7802–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol. 2010;8:27–33.

    Article  CAS  PubMed  Google Scholar 

  35. Hubner RA, Worsnop F, Cunningham D, et al. Gemcitabine plus capecitabine in unselected patients with advanced pancreatic cancer. Pancreas. 2013;42(3):511–5.

    Article  CAS  PubMed  Google Scholar 

  36. Inal A, Kos FT, Algin E, et al. Prognostic factors in patients with advanced pancreatic cancer treated with gemcitabine alone or gemcitabine plus cisplatin: retrospective analysis of a multicenter study. J BUON. 2012;17(1):102–5.

    CAS  PubMed  Google Scholar 

  37. Ueno H, Ioka T, Ikeda M, et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin Oncol. 2013;31(13):1640–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hung SW, Mody HR, Govindarajan R. Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. Cancer Lett. 2012;320(2):138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28(22):3617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kindler HL, Ioka T, Richel DJ, et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. 2011;12(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  42. Philip PA, Benedetti J, Corless CL, et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol. 2010;28(22):3605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goncalves A, Gilabert M, Francois E, et al. BAYPAN study: a double-blind phase III andomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol. 2012;23(11):2799–805.

    Article  CAS  PubMed  Google Scholar 

  44. Oshi M, Takahashi H, Tokumaru Y, et al. The E2F pathway score as a predictive biomarker of response to neoadjuvant therapy in ER+/HER2 breast cancer. Cells. 2020;9(7):1643.

    Article  CAS  PubMed Central  Google Scholar 

  45. Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Natural Science Foundation of China (81960429) and Guizhou Province Science and Technology Projects ([2018]5779-31).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CS, JL and HZ. The first draft of the manuscript was written by QL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haitao Zhu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Guizhou Medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study. The authors affirm that human research participants provided informed consent for publication of the images in the figure (Fig. 1E, F).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Song, C., Li, J. et al. E2F2 enhances the chemoresistance of pancreatic cancer to gemcitabine by regulating the cell cycle and upregulating the expression of RRM2. Med Oncol 39, 124 (2022). https://doi.org/10.1007/s12032-022-01715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01715-x

Keywords

Navigation