Skip to main content

Advertisement

Log in

Alterations in cellular metabolisms after Imatinib therapy: a review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is characterized by the possession of the Philadelphia chromosome, which contains the Bcr-Abl oncogene that codes for the oncoprotein BCR-ABL. Through glucose metabolism, glycolysis, and the translocation of the high-affinity glucose transporter to the cell surface, BCR-ABL modulates various signaling pathways in CML cells and maintains ATP turnover in tumor cells. Given the effective results of anti-tumor drugs in normalizing abnormal cellular metabolism, Imatinib (IM) has begun to be investigated and proven to be a highly potent tyrosine kinase inhibitor (TKI) in CML therapy. Initially, IM was tested for aberrant glucose metabolism, but all four metabolisms (glucose, lipid, amino acid, and nucleotide) are interrelated and enhance tumor growth under stress; eventually, the other three metabolisms were investigated. Subsequent effects of IM therapy showed a switch from glycolysis to the tricarboxylic acid cycle, upregulation of pentose phosphate pathway-associated oxidative pathways, and internal translocation of glucose transporters. In terms of lipid metabolism, IM had contradictory results: in one study, it served as a triglyceride and total cholesterol regulator, while in another study, it had no impact. The effect of IM on altered amino acid and nucleotide metabolisms was investigated using a multi-omics approach, which revealed a decrease in sulfur-containing amino acids, aromatic amino acids, and nucleotide biosynthesis. So, despite the mixed effect on cellular metabolism, IM has more positive effects, and therefore, the drug proved to be better than other TKIs. The present study is one approach to determine the transformative activities of IM against CML-associated metabolic changes, but further investigation is still needed to uncover more potentials of IM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated for the preparation of this manuscript.

References

  1. Soverini S, Bassan R, Lion T. Treatment and monitoring of Philadelphia chromosome-positive leukemia patients: recent advances and remaining challenges. J Hematol Oncol. 2019. https://doi.org/10.1186/s13045-019-0729-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tridente G. Adverse events. In: Adverse events and oncotargeted kinase inhibitors. Amsterdam: Elsevier; 2017.

    Google Scholar 

  3. Singh P, Kumar V, Gupta SK, Kumari G, Verma M. Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review. Med Oncol. 2021;38(1):1–16. https://doi.org/10.1007/s12032-021-01462-5.

    Article  CAS  Google Scholar 

  4. Singh P, Gupta SK, Ali V, Verma M. Downregulation of Bcr-Abl oncogene in chronic myeloid leukemia by micro RNAs. Asian Pac J Health Sci. 2018;5(4):65–84. https://doi.org/10.21276/apjhs.2018.5.4.12.

    Article  Google Scholar 

  5. Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):1–14. https://doi.org/10.1186/s13045-018-0624-2.

    Article  CAS  Google Scholar 

  6. Buchdunge E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295(1):139–45.

    Google Scholar 

  7. Demetri GD. Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur J Cancer. 2002;38:S52–9. https://doi.org/10.1016/S0959-8049(02)80603-7.

    Article  PubMed  Google Scholar 

  8. Krystal GW. Imatinib mesylate (STI571) for myeloid malignancies other than CML. Leuk Res. 2004;28(1):53–9. https://doi.org/10.1016/j.leukres.2003.10.003.

    Article  CAS  Google Scholar 

  9. de Kogel CE, Schellens JHM. Imatinib. Oncologist. 2007;12(12):1390–4. https://doi.org/10.1634/theoncologist.12-12-1390.

    Article  CAS  PubMed  Google Scholar 

  10. Vaidya S, Ghosh K, Vundinti BR. Recent developments in drug resistance mechanism in chronic myeloid leukemia: a review. Eur J Haematol. 2011. https://doi.org/10.1111/j.1600-0609.2011.01689.x.

    Article  PubMed  Google Scholar 

  11. Fava C, Rege-Cambrin G, Saglio G. Imatinib: the first-line CML therapy. Cham: Springer; 2021. p. 49–59.

    Google Scholar 

  12. Hughes T, White D. Which TKI? An embarrassment of riches for chronic myeloid leukemia patients. Hematology. 2013;2013(1):168–75. https://doi.org/10.1182/asheducation-2013.1.168.

    Article  PubMed  Google Scholar 

  13. Eskazan AE, Ozmen D. Tyrosine kinase inhibitor (TKI) therapy for newly-diagnosed patients with chronic myeloid leukemia: focusing on TKI discontinuation due to adverse events—is better always good? Expert Rev Hematol. 2017;10(7):583–6. https://doi.org/10.1080/17474086.2017.1339599.

    Article  CAS  PubMed  Google Scholar 

  14. Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37(4):530–42. https://doi.org/10.1016/j.ccell.2020.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar V, Singh P, Gupta SK, Ali V, Verma M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: a review. Mol Cell Biochem. 2022. https://doi.org/10.1007/s11010-022-04376-6.

    Article  PubMed  Google Scholar 

  16. Serkova N, Boros LG. Detection of resistance to imatinib by metabolic profiling. Am J Pharmacogenomics. 2005;5(5):293–302. https://doi.org/10.2165/00129785-200505050-00002.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4(3):e532–e532. https://doi.org/10.1038/cddis.2013.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinhouse S, Warburg O, Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70. https://doi.org/10.1126/science.124.3215.267.

    Article  Google Scholar 

  19. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  20. Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, et al. The transcription factor HIF-1 plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21(9):1037–49. https://doi.org/10.1101/gad.1529107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 2006;9(4):358–65. https://doi.org/10.1097/01.mco.0000232894.28674.30.

    Article  CAS  PubMed  Google Scholar 

  22. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. https://doi.org/10.1038/nrm3025.

    Article  CAS  PubMed  Google Scholar 

  23. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8(3):224–36. https://doi.org/10.1016/j.cmet.2008.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han H-S, Kang G, Kim JS, Choi BH, Koo S-H. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016;48(3):e218–e218. https://doi.org/10.1038/emm.2015.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tozzi M, Hansen JB, Novak I. Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol. 2020;228(2):e13360. https://doi.org/10.1111/apha.13360.

    Article  CAS  Google Scholar 

  26. Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019;28:1–13. https://doi.org/10.1016/j.molmet.2019.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, et al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL–positive cells. Clin Cancer Res. 2009;15(10):3442–50. https://doi.org/10.1158/1078-0432.CCR-08-3291.

    Article  CAS  PubMed  Google Scholar 

  28. Barnes K, McIntosh E, Whetton AD, Daley GQ, Bentley J, Baldwin SA. Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene. 2005;24(20):3257–67. https://doi.org/10.1038/sj.onc.1208461.

    Article  CAS  PubMed  Google Scholar 

  29. Ko BW, Han J, Heo JY, Jang Y, Kim SJ, Kim J, et al. Metabolic characterization of imatinib-resistant BCR-ABL T315I chronic myeloid leukemia cells indicates down-regulation of glycolytic pathway and low ROS production. Leuk Lymphoma. 2016;57(9):2180–8. https://doi.org/10.3109/10428194.2016.1142086.

    Article  CAS  PubMed  Google Scholar 

  30. Yan T-Y, Naren D-L, Gong Y-P. The roles of Glut5 in imatinib resistance in the Ph+ acute lymphoblastic leukemia cell. J Sichuan Univ Med Sci Ed. 2017;48(3):389–93.

    Google Scholar 

  31. Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004;10(19):6661–8. https://doi.org/10.1158/1078-0432.CCR-04-0039.

    Article  CAS  PubMed  Google Scholar 

  32. Boren J, Cascante M, Marin S, Comı́n-Anduix B, Centelles JJ, Lim S, et al. Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem. 2001;276(41):37747–53. https://doi.org/10.1074/jbc.M105796200.

    Article  CAS  PubMed  Google Scholar 

  33. Hagerkvist R, Makeeva N, Elliman S, Welsh N. Imatinib mesylate (Gleevec) protects against streptozotocin-induced diabetes and islet cell death in vitro. Cell Biol Int. 2006;30(12):1013–7. https://doi.org/10.1016/j.cellbi.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  34. Wolf AM, Wolf D, Rumpold H, Ludwiczek S, Enrich B, Gastl G, et al. The kinase inhibitor imatinib mesylate inhibits TNF-α production in vitro and prevents TNF-dependent acute hepatic inflammation. PNAS. 2005;102(38):13622–7. https://doi.org/10.1073/pnas.0501758102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. PNAS. 2008;105(48):18895–900. https://doi.org/10.1073/pnas.0810246105.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Han MS, Chung KW, Cheon HG, Rhee SD, Yoon C-H, Lee M-K, et al. Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes. 2009;58(2):329–36. https://doi.org/10.2337/db08-0080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes. JAMA. 2009;302(2):179–218. https://doi.org/10.1001/jama.2009.976.

    Article  CAS  PubMed  Google Scholar 

  38. Fitter S, Vandyke K, Schultz CG, White D, Hughes TP, Zannettino ACW. Plasma adiponectin levels are markedly elevated in imatinib-treated chronic myeloid leukemia (CML) patients: a mechanism for improved insulin sensitivity in type 2 diabetic CML patients? J Clin Endocrinol Metab. 2010;95(8):3763–7. https://doi.org/10.1210/jc.2010-0086.

    Article  CAS  PubMed  Google Scholar 

  39. Zdenek R, Belohlavkova P, Cetkovsky P, Faber E, Klamova H, Ludmila M, et al. Comparison of glucose and lipid metabolism abnormality during nilotinib, imatinib and dasatinib therapy—results of enigma 2 study. Blood. 2014;124(21):1813. https://doi.org/10.1182/blood.V124.21.1813.1813.

    Article  Google Scholar 

  40. Hosch SE, Olefsky JM, Kim JJ. Applied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab. 2006;4(1):5–6. https://doi.org/10.1016/j.cmet.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  41. Fitter S, Vandyke K, Gronthos S, Zannettino ACW. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. J Mol Endocrinol. 2012;48(3):229–40. https://doi.org/10.1530/JME-12-0003.

    Article  CAS  PubMed  Google Scholar 

  42. Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285(44):33623–31. https://doi.org/10.1074/jbc.M109.085084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–25. https://doi.org/10.1146/annurev-ento-112408-085356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehninger AL, Nelson DL, Cox MM, Cox MM. Lehninger principles of biochemistry. New York: Macmillan; 2005.

    Google Scholar 

  45. Jo Y, Okazaki H, Moon Y-A, Zhao T. Regulation of lipid metabolism and beyond. Int J Endocrinol. 2016;2016:1. https://doi.org/10.1155/2016/5415767.

    Article  Google Scholar 

  46. Harris JR. Cholesterol binding and cholesterol transport proteins. Dordrecht: Springer; 2010.

    Book  Google Scholar 

  47. Feingold KR, Grunfeld C. Introduction to lipids and lipoproteins. South Dartmouth: MDText.com inc; 2000.

    Google Scholar 

  48. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77. https://doi.org/10.1038/nrc2222.

    Article  CAS  PubMed  Google Scholar 

  49. Lassila M, Allen TJ, Cao Z, Thallas V, Jandeleit-Dahm KA, Candido R, et al. Imatinib attenuates diabetes-associated atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(5):935–42. https://doi.org/10.1161/01.ATV.0000124105.39900.db.

    Article  CAS  PubMed  Google Scholar 

  50. Iurlo A, Orsi E, Cattaneo D, Resi V, Bucelli C, Orofino N, et al. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem? Oncotarget. 2015;6(32):33944. https://doi.org/10.18632/oncotarget.5580.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gologan R, Constantinescu G, Georgescu D, Ostroveanu D, Vasilache D, Dobrea C, et al. Hypolipemiant besides antileukemic effect of imatinib mesylate. Leuk Res. 2009;33(9):1285–7. https://doi.org/10.1016/j.leukres.2009.02.024.

    Article  CAS  PubMed  Google Scholar 

  52. Franceschino A, Tornaghi L, Benemacher V, Assouline S, Gambacorti-Passerini C. Alterations in creatine kinase, phosphate and lipid values in patients with chronic myeloid leukemia during treatment with imatinib. Haematologica. 2008;93(2):317–8. https://doi.org/10.3324/haematol.11680.

    Article  PubMed  Google Scholar 

  53. Gottardi M, Manzato E, Gherlinzoni F. Imatinib and hyperlipidemia. N Engl J Med. 2005;353(25):2722–3. https://doi.org/10.1056/NEJMc052500.

    Article  CAS  PubMed  Google Scholar 

  54. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. https://doi.org/10.1056/NEJMoa1609324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ellis M, Krashin E, Hamburger-Avnery O, Gan S, Elis A, Ashur-Fabian O. The anti-leukemic and lipid lowering effects of imatinib are not hindered by statins in CML: a retrospective clinical study and in vitro assessment of lipid-genes transcription. Leuk Lymphoma. 2017;58(5):1172–7. https://doi.org/10.1080/10428194.2016.1228928.

    Article  CAS  PubMed  Google Scholar 

  56. Klawitter J, Anderson N, Klawitter J, Christians U, Leibfritz D, Eckhardt SG, et al. Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study. Br J Cancer. 2009;100(6):923–31. https://doi.org/10.1038/sj.bjc.6604946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377–92. https://doi.org/10.1007/s00018-015-2070-4.

    Article  CAS  PubMed  Google Scholar 

  58. Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of amino acids in cancer. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2020.603837.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med. 2020;52(1):15–30. https://doi.org/10.1038/s12276-020-0375-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–8. https://doi.org/10.1016/j.tibs.2014.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kalhan SC, Hanson RW. Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem. 2012;287(24):19786–91. https://doi.org/10.1074/jbc.R112.357194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang B, Dong L-W, Tan Y-X, Zhang J, Pan Y-F, Yang C, et al. Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer. 2013;109(1):14–23. https://doi.org/10.1038/bjc.2013.293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagarajan A, Malvi P, Wajapeyee N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer. 2016;2(7):365–77. https://doi.org/10.1016/j.trecan.2016.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers. Cancer. 2004;100(4):826–33. https://doi.org/10.1002/cncr.20057.

    Article  CAS  PubMed  Google Scholar 

  65. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res. 2007;67(7):3345–55. https://doi.org/10.1158/0008-5472.CAN-06-2519.

    Article  CAS  PubMed  Google Scholar 

  66. Lorenzi PL, Llamas J, Gunsior M, Ozbun L, Reinhold WC, Varma S, et al. Asparagine synthetase is a predictive biomarker of l-asparaginase activity in ovarian cancer cell lines. Mol Cancer Ther. 2008;7(10):3123–8. https://doi.org/10.1158/1535-7163.MCT-08-0589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu Y, Lv F, Zhu X, Wu Y, Shen X. Loss of asparagine synthetase suppresses the growth of human lung cancer cells by arresting cell cycle at G0/G1 phase. Cancer Gene Ther. 2016;23(9):287–94. https://doi.org/10.1038/cgt.2016.28.

    Article  CAS  PubMed  Google Scholar 

  68. Yu Q, Wang X, Wang L, Zheng J, Wang J, Wang B. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. Scand J Gastroenterol. 2016;51(10):1220–6. https://doi.org/10.1080/00365521.2016.1190399.

    Article  CAS  PubMed  Google Scholar 

  69. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74. https://doi.org/10.1038/nm934.

    Article  CAS  PubMed  Google Scholar 

  70. Poliaková M, Aebersold DM, Zimmer Y, Medová M. The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer. 2018;17(1):1–12. https://doi.org/10.1186/s12943-018-0798-9.

    Article  CAS  Google Scholar 

  71. Taymaz-Nikerel H, Eraslan S, Kırdar B. Insights into the mechanism of anticancer drug imatinib revealed through multi-omic analyses in yeast. OMICS. 2020;24(11):667–78. https://doi.org/10.1089/omi.2020.0144.

    Article  CAS  PubMed  Google Scholar 

  72. dos Santos SC, Mira NP, Moreira AS, Sá-Correia I. Quantitative- and phospho-proteomic analysis of the yeast response to the tyrosine kinase inhibitor imatinib to pharmacoproteomics-guided drug line extension. OMICS. 2012;16(10):537–51. https://doi.org/10.1089/omi.2012.0012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith AM, Ammar R, Nislow C, Giaever G. A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther. 2010;127(2):156–64. https://doi.org/10.1016/j.pharmthera.2010.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res. 2014;14(1):2–16. https://doi.org/10.1111/1567-1364.12094.

    Article  CAS  PubMed  Google Scholar 

  75. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53. https://doi.org/10.1016/j.bbagen.2012.09.008.

    Article  CAS  PubMed  Google Scholar 

  76. Cox AG, Hwang KL, Brown KK, Evason KJ, Beltz S, Tsomides A, et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol. 2016;18(8):886–96. https://doi.org/10.1038/ncb3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. West TP. Pyrimidine nucleotide synthesis in Pseudomonas nitroreducens and the regulatory role of pyrimidines. Microbiol Res. 2014;169(12):954–8. https://doi.org/10.1016/j.micres.2014.04.003.

    Article  CAS  PubMed  Google Scholar 

  78. Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81. https://doi.org/10.1146/annurev.nutr.012809.104810.

    Article  CAS  PubMed  Google Scholar 

  79. Gerber G, Siems W, Werner A, Dubiel W, Grune T, Henke W, et al. Dynamics in the purine nucleotides of liver during various periods of hypoxia/ischaemia and reoxygenation. Boston: Springer; 1991. p. 259–64.

    Google Scholar 

  80. Miller SG, Hafen PS, Brault JJ. Increased adenine nucleotide degradation in skeletal muscle atrophy. Int J Mol Sci. 2019;21(1):88. https://doi.org/10.3390/ijms21010088.

    Article  CAS  PubMed Central  Google Scholar 

  81. Ma J, Zhong M, Xiong Y, Gao Z, Wu Z, Liu Y, et al. Emerging roles of nucleotide metabolism in cancer development: progress and prospect. Aging. 2021;13(9):13349–58. https://doi.org/10.18632/aging.202962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Madaan K, Kaushik D, Verma T. Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther. 2012;12(1):19–29. https://doi.org/10.1586/era.11.175.

    Article  CAS  PubMed  Google Scholar 

  83. Szekeres T, Gharehbaghi K, Fritzer M, Woody M, Srivastava A, v’ant Riet B, Jayaram HN, Elford HL. Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase. Cancer Chemother Pharmacol. 1994;34(1):63–6. https://doi.org/10.1007/BF00686113.

    Article  CAS  PubMed  Google Scholar 

  84. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96(3):925–32.

    Article  CAS  Google Scholar 

  85. Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T. Chronic myelogenous leukemia molecular signature. Oncogene. 2003;22(25):3952–63. https://doi.org/10.1038/sj.onc.1206620.

    Article  CAS  PubMed  Google Scholar 

  86. Gu JJ, Santiago L, Mitchell BS. Synergy between imatinib and mycophenolic acid in inducing apoptosis in cell lines expressing Bcr-Abl. Blood. 2005;105(8):3270–7. https://doi.org/10.1182/blood-2004-10-3864.

    Article  CAS  PubMed  Google Scholar 

  87. Kroschwald L, Suttorp M, Tauer J, Zimmermann N, Gunther C, Bauer A. Off-target effect of imatinib and nilotinib on human vitamin D3 metabolism. Mol Med Rep. 2017;17(1):1382–8. https://doi.org/10.3892/mmr.2017.7952.

    Article  CAS  PubMed  Google Scholar 

  88. Damaraju VL, Kuzma M, Cass CE, Putman CT, Sawyer MB. Multitargeted kinase inhibitors imatinib, sorafenib and sunitinib perturb energy metabolism and cause cytotoxicity to cultured C2C12 skeletal muscle derived myotubes. Biochem Pharmacol. 2018;155:162–71. https://doi.org/10.1016/j.bcp.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

  89. Bouitbir J, Panajatovic MV, Frechard T, Roos NJ, Krähenbühl S. Imatinib and dasatinib provoke mitochondrial dysfunction leading to oxidative stress in C2C12 myotubes and human RD cells. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.01106.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fröbom R, Berglund E, Aspinwall CA, Lui W-O, Nilsson I-L, Larsson C, et al. Direct interaction of the ATP-sensitive K+ channel by the tyrosine kinase inhibitors imatinib, sunitinib and nilotinib. Biochem Biophys Res Commun. 2021;557:14–9. https://doi.org/10.1016/j.bbrc.2021.03.166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the Banaras Hindu University, Varanasi in writing this manuscript. VK, PS, and VA are grateful to the CSIR, New Delhi, to award their fellowships.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MV conceived and designed this review. VK collected the literature and prepared the first draft of the manuscript. PS edited the manuscript and generated the figures. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Malkhey Verma.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Consent to participate

This article does not contain any studies with human participants.

Consent to publish

This article does not contain any studies with human research participants, so informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, P., Gupta, S.K. et al. Alterations in cellular metabolisms after Imatinib therapy: a review. Med Oncol 39, 95 (2022). https://doi.org/10.1007/s12032-022-01699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01699-8

Keywords

Navigation