Skip to main content

Advertisement

Log in

Cell line models for drug discovery in PIK3CA-mutated colorectal cancers

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer remains a major cause of cancer-related morbidity and mortality. Metastatic disease is still incurable in most cases. New therapies based on a better understanding of the pathogenesis are needed to improve outcomes. Mutations in the catalytic sub-unit of kinase PI3K encoded by gene PIK3CA are common in colorectal cancer cell lines and patient samples. The characteristics of colorectal cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE), with and without PIK3CA mutations, were evaluated and compared. A panel of colorectal cancer cell lines with and without PIK3CA mutations were compared for their sensitivity to PIK3 inhibitors. Concomitant molecular abnormalities of sensitive versus resistant cell lines were identified. Colorectal cancer cell lines with PIK3CA mutations are commonly diploid and have microsatellite instability (MSI) and a high tumor mutation burden (TMB), compared with cell lines without PIK3CA mutations. Cell lines with PIK3CA mutations tend to have higher sensitivity to some but not all PI3K inhibitors tested and display variability in sensitivity. Both cell lines with MSI and microsatellite stable (MSS) are among the most sensitive to PI3K inhibitors. Multiple concomitant mutations in the PI3K/AKT and KRAS/BRAF/MEK/ERK pathways are often observed in sensitive cell lines. In concordance with patient samples, colorectal cancer cell lines with PIK3CA mutations display more commonly MSI and tend to be more sensitive to PI3K inhibitors. Variability in sensitivity of PIK3CA-mutated cell lines suggests that additional molecular abnormalities contribute to sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64. https://doi.org/10.3322/caac.21601.

    Article  PubMed  Google Scholar 

  3. Wookey V, Grothey A. Update on the role of pembrolizumab in patients with unresectable or metastatic colorectal cancer. Therap Adv Gastroenterol. 2021;14:17562848211024460. https://doi.org/10.1177/17562848211024460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T, Desai J, Ciardiello F, Loupakis F, Hong YS, Steeghs N, Guren TK, Arkenau HT, Garcia-Alfonso P, Elez E, Gollerkeri A, Maharry K, Christy-Bittel J, Kopetz S. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol. 2021;39(4):273–84. https://doi.org/10.1200/JCO.20.02088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siena S, Di Bartolomeo M, Raghav K, Masuishi T, Loupakis F, Kawakami H, Yamaguchi K, Nishina T, Fakih M, Elez E, Rodriguez J, Ciardiello F, Komatsu Y, Esaki T, Chung K, Wainberg Z, Sartore-Bianchi A, Saxena K, Yamamoto E, Bako E, Okuda Y, Shahidi J, Grothey A, Yoshino T, DESTINY-CRC01 investigators. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021;22(6):779–89. https://doi.org/10.1016/S1470-2045(21)00086-3.

    Article  CAS  PubMed  Google Scholar 

  6. Ratti M, Grizzi G, Passalacqua R, Lampis A, Cereatti F, Grassia R, Hahne JC. NTRK fusions in colorectal cancer: clinical meaning and future perspective. Expert Opin Ther Targets. 2021;25(8):677–83. https://doi.org/10.1080/14728222.2021.1978070.

    Article  CAS  PubMed  Google Scholar 

  7. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol. 2015;26(1):13–21. https://doi.org/10.1093/annonc/mdu378.

    Article  CAS  PubMed  Google Scholar 

  8. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  9. Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15:857–65.

    Article  CAS  Google Scholar 

  10. Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33:125-136.e3.

    Article  CAS  Google Scholar 

  11. Voutsadakis IA. The landscape of PIK3CA mutations in colorectal cancer. Clin Colorectal Cancer. 2021;20(3):201–15. https://doi.org/10.1016/j.clcc.2021.02.003.

    Article  PubMed  Google Scholar 

  12. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, Yamashita T, Lu YS, Inoue K, Takahashi M, Pápai Z, Longin AS, Mills D, Wilke C, Hirawat S, Juric D, SOLAR-1 Study Group. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904.

    Article  PubMed  Google Scholar 

  13. Narayanankutty A. PI3K/Akt/mTOR pathway as a therapeutic target for colorectal cancer: a review of preclinical and clinical evidence. Curr Drug Targets. 2019;20(12):1217–26. https://doi.org/10.2174/1389450120666190618123846.

    Article  CAS  PubMed  Google Scholar 

  14. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013. https://doi.org/10.1126/scisignal.2004088.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  16. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H, Cokelaer T, Greninger P, van Dyk E, Chang H, de Silva H, Heyn H, Deng X, Egan RK, Liu Q, Mironenko T, Mitropoulos X, Richardson L, Wang J, Zhang T, Moran S, Sayols S, Soleimani M, Tamborero D, Lopez-Bigas N, Ross-Macdonald P, Esteller M, Gray NS, Haber DA, Stratton MR, Benes CH, Wessels LFA, Saez-Rodriguez J, McDermott U, Garnett MJ. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166(3):740–54. https://doi.org/10.1016/j.cell.2016.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley R, Wilkinson P, van der Meer D, Dow D, Buser-Doepner C, Bertotti A, Trusolino L, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568(7753):511–6. https://doi.org/10.1038/s41586-019-1103-9.

    Article  CAS  PubMed  Google Scholar 

  20. van der Meer D, Barthorpe S, Yang W, Lightfoot H, Hall C, Gilbert J, Francies HE, Garnett MJ. Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019;47(D1):D923–9. https://doi.org/10.1093/nar/gky872.

    Article  CAS  PubMed  Google Scholar 

  21. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill S, Harrington WF, Pantel S, Krill-Burger JM, Meyers RM, Ali L, Goodale A, Lee Y, Jiang G, Hsiao J, Gerath WFJ, Howell S, Merkel E, Ghandi M, Garraway LA, Root DE, Golub TR, Boehm JS, Hahn WC. Defining a cancer dependency map. Cell. 2017;170(3):564-576.e16. https://doi.org/10.1016/j.cell.2017.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, Virtanen C, Bradner JE, Bader GD, Mills GB, Pe’er D, Moffat J, Neel BG. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164(1–2):293–309. https://doi.org/10.1016/j.cell.2015.11.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35. https://doi.org/10.1016/j.cell.2017.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, Qiu J, Fan J, Song P, Yu J, Zhang X, King-Kallimanis BL, Chen W, Ricks TK, Gong Y, Wang X, Windsor K, Rhieu SY, Geiser G, Banerjee A, Chen X, Reyes Turcu F, Chatterjee DK, Pathak A, Seidman J, Ghosh S, Philip R, Goldberg KB, Kluetz PG, Tang S, Amiri-Kordestani L, Theoret MR, Pazdur R, Beaver JA. FDA approval summary: alpelisib plus Fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin Cancer Res. 2021;27(7):1842–9. https://doi.org/10.1158/1078-0432.CCR-20-3652.

    Article  CAS  PubMed  Google Scholar 

  26. Miller BW, Przepiorka D, de Claro RA, Lee K, Nie L, Simpson N, Gudi R, Saber H, Shord S, Bullock J, Marathe D, Mehrotra N, Hsieh LS, Ghosh D, Brown J, Kane RC, Justice R, Kaminskas E, Farrell AT, Pazdur R. FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res. 2015;21(7):1525–9. https://doi.org/10.1158/1078-0432.CCR-14-2522.

    Article  CAS  PubMed  Google Scholar 

  27. Goodwin R, Jonker D, Chen E, Kennecke H, Cabanero M, Tsao MS, Vickers M, Bohemier C, Lim H, Ritter H, Tu D, Seymour L. A phase Ib study of a PI3Kinase inhibitor BKM120 in combination with panitumumab in patients with KRAS wild-type advanced colorectal cancer. Invest New Drugs. 2020;38(4):1077–84. https://doi.org/10.1007/s10637-019-00814-3.

    Article  PubMed  Google Scholar 

  28. van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens FALM, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov. 2017;7(6):610–9. https://doi.org/10.1158/2159-8290.CD-16-0795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernandes MS, Melo S, Velho S, Carneiro P, Carneiro F, Seruca R. Specific inhibition of p110α subunit of PI3K: putative therapeutic strategy for KRAS mutant colorectal cancers. Oncotarget. 2016;7(42):68546–58. https://doi.org/10.18632/oncotarget.11843.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stewart A, Coker EA, Pölsterl S, Georgiou A, Minchom AR, Carreira S, Cunningham D, O’Brien ME, Raynaud FI, de Bono JS, Al-Lazikani B, Banerji U. Differences in signaling patterns on PI3K inhibition reveal context specificity in KRAS-mutant cancers. Mol Cancer Ther. 2019;18(8):1396–404. https://doi.org/10.1158/1535-7163.MCT-18-0727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Semaan C, Neilson KA, Brown B, Molloy MP. Pharmacological inhibition of casein kinase 2 enhances the effectiveness of PI3K inhibition in colon cancer cells. Anticancer Res. 2018;38(11):6195–200. https://doi.org/10.21873/anticanres.12973.

    Article  CAS  PubMed  Google Scholar 

  32. Beale G, Haagensen EJ, Thomas HD, Wang LZ, Revill CH, Payne SL, Golding BT, Hardcastle IR, Newell DR, Griffin RJ, Cano C. Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer. Br J Cancer. 2016;115(6):682–90. https://doi.org/10.1038/bjc.2016.238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest regarding this study.

Ethical approval

No research grants were received to perform the research presented in this paper.

Informed consent

As this article contains no human or animal participants, no informed consent was required or obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutsadakis, I.A. Cell line models for drug discovery in PIK3CA-mutated colorectal cancers. Med Oncol 39, 89 (2022). https://doi.org/10.1007/s12032-022-01695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01695-y

Keywords

Navigation