Skip to main content

Advertisement

Log in

The role of histone deacetylase 3 in breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

It has been recently revealed that Histone Deacetylase (HDAC) 3, a unique member of the HDACs family, can trigger and progress cancers by alternation in genes expression and proteins activity. Epigenetic modifications by HDACs have been studied well in various cancer cells. Recent studies have focused on the HDAC enzymes as a possible target in cancer therapy. There are significant documents on upregulation of HDAC3 in breast cancer (BC) cells which suggest an oncogenic role for this enzyme. Interestingly, some studies showed that HDAC3 inhibition could be considered as a promising target in breast cancer therapy, and thus far, several inhibitors from different nature have been introduced. In this review, we discussed the function and highlight the existing inhibitors of HDAC3 in BC pathogenesis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APL:

Acute promyelocytic leukemia

AR:

Androgen receptor

BC:

Breast cancer

Bcl6:

B-cell lymphoma 6

CK2:

Casein kinase

c-Myc:

Cellular myelocytomatosis

CSC:

Cancer stem cell

E2F1:

Transcription factor E2F1

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

ER:

Estrogen receptor

G2:

Growth 2 phase

GATA1:

GATA-binding factors

GSK:

Glycogen Synthase Kinase

HATs:

Histone acetyltransferases

HDAC3:

Histone deacetylase-3

HDACi:

Histone deacetylase inhibitor

HDACs:

Histone deacetylases

HER2:

Human epidermal growth factor receptor 2

HIF-1 α:

Hypoxia-inducible factor 1α

HIPK2:

Homeodomain-interacting protein kinase 2

HCC:

Hepato-cellular carcinoma

HE4:

Human epididymis protein 4

Hsp90:

Heat shock protein 90

IAPs:

Inhibitor of apoptosis proteins

JNK:

Jun N-terminal kinase

KDELR2:

KDEL (Lys-Asp-Glu-Leu) receptor 2

M:

Mitosis phase

MAPK:

Mitogen-activated protein kinase

MiRNAs:

MicroRNAs

Mi-2/NuRD:

Nucleosome remodeling deacetylase

MM:

Multiple myeloma

MyoD:

Myogenic regulatory factor

NAD+ :

Nicotinamide adenine dinucleotide

NF-kB:

Nuclear factor κB

N-CoR:

Nuclear receptor co-repressor

P21:

Potent cyclin-dependent kinase inhibitor

p300:

Histone acetyltransferase belongs to the p300/CBP family

p53:

Tumor protein 53

PD-L1:

Programmed death ligand 1

PI3Ks:

Phosphoinositide 3-kinase

POC5:

Protein Coding5

PR:

Progesterone receptor

PUMA:

P53-upregulated modulator of apoptosis

ROS:

Reactive oxygen species

RUNEX3:

Core binding factor α3 subunit

SAHA:

Suberanilohydroxamic acid

SENP1:

Sentrin-specific protease 1

Sin3:

Swi independent

siRNAs:

Small interfering RNAs

SIRT:

NAD-dependent deacetylase sirtuin

SMRTs:

Silencing mediator of retinoid and thyroid-hormone receptors

STAT3:

Signal transduction and activation of transcription 3

YY1:

Transcription factor Yin Yang 1

TFIIE:

Transcription factor II E

TFIIF:

Transcription factor II F

TNBC:

Triple-negative breast cancer

TNF-α:

Tumor necrosis factor-α

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  3. Lukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanislawek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 2021;13(17):4287.

    CAS  Google Scholar 

  4. Tan PH, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, et al. The 2019 World Health Organization classification of tumours of the breast. Histopathology. 2020;77(2):181–5.

    PubMed  Google Scholar 

  5. Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34(3):1071–7.

    CAS  PubMed  Google Scholar 

  6. Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, et al. Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics. 2014;6(6):651–64.

    CAS  PubMed  Google Scholar 

  7. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151–64.

    Google Scholar 

  8. Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. 2017;173:118–34.

    CAS  PubMed  Google Scholar 

  9. Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, et al. Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol. 2017;111:166–72.

    CAS  PubMed  Google Scholar 

  10. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.

    PubMed Central  Google Scholar 

  11. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9):a019505.

    PubMed  PubMed Central  Google Scholar 

  12. Li G, Tian Y, Zhu WG. The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol. 2020;8:576946.

    PubMed  PubMed Central  Google Scholar 

  13. Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20(3):3898–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713.

    PubMed  PubMed Central  Google Scholar 

  15. Patra S, Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Mishra SR, et al. Dysregulation of histone deacetylases in carcinogenesis and tumor progression: a possible link to apoptosis and autophagy. Cell Mol Life Sci. 2019;76(17):3263–82.

    CAS  PubMed  Google Scholar 

  16. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012;6(6):579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215.

    PubMed  PubMed Central  Google Scholar 

  18. Salek Farrokhi A, Mohammadlou M, Abdollahi M, Eslami M, Yousefi B. Histone deacetylase modifications by probiotics in colorectal cancer. J Gastrointest Cancer. 2020;51(3):754–64.

    PubMed  Google Scholar 

  19. Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, et al. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics. 2019;11(1):7.

    PubMed  PubMed Central  Google Scholar 

  20. Tchio Mantho CI, Harbuzariu A, Gonzalez-Perez RR. Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer. World J Clin Oncol. 2017;8(3):178–89.

    PubMed  PubMed Central  Google Scholar 

  21. Darvishi N, Rahimi K, Mansouri K, Fathi F, Menbari MN, Mohammadi G, et al. MiR-646 prevents proliferation and progression of human breast cancer cell lines by suppressing HDAC2 expression. Mol Cell Probes. 2020;53:101649.

    CAS  PubMed  Google Scholar 

  22. Menbari MN, Rahimi K, Ahmadi A, Elyasi A, Darvishi N, Hosseini V, et al. MiR-216b-5p inhibits cell proliferation in human breast cancer by down-regulating HDAC8 expression. Life Sci. 2019;237:116945.

    CAS  PubMed  Google Scholar 

  23. Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, et al. Association of HDAC8 expression with pathological findings in triple negative and non-triple negative breast cancer: implications for diagnosis. Iran Biomed J. 2020;24(5):288–94.

    PubMed  PubMed Central  Google Scholar 

  24. Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yeganeh S, Elyasi A, Darvishi N, et al. miR-483-3p suppresses the proliferation and progression of human triple negative breast cancer cells by targeting the HDAC8>oncogene. J Cell Physiol. 2020;235(3):2631–42.

    CAS  PubMed  Google Scholar 

  25. Rahmani G, Sameri S, Abbasi N, Abdi M, Najafi R. The clinical significance of histone deacetylase-8 in human breast cancer. Pathol Res Pract. 2021;220:153396.

    CAS  PubMed  Google Scholar 

  26. Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021;277:119504.

    CAS  PubMed  Google Scholar 

  27. Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B. HDAC3 is a potential validated target for cancer: an overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem. 2018;157:1127–42.

    CAS  PubMed  Google Scholar 

  28. Zhang L, Chen Y, Jiang Q, Song W, Zhang L. Therapeutic potential of selective histone deacetylase 3 inhibition. Eur J Med Chem. 2019;162:534–42.

    CAS  PubMed  Google Scholar 

  29. Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem. 2020;192:112171.

    CAS  PubMed  Google Scholar 

  30. Ishii S. The role of histone deacetylase 3 complex in nuclear hormone receptor action. Int J Mol Sci. 2021;22(17):9138.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature. 2012;481(7381):335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang N, Jakobsson T, Fan R, Treuter E. The nuclear receptor-co-repressor complex in control of liver metabolism and disease. Front Endocrinol (Lausanne). 2019;10:411.

    Google Scholar 

  33. Kwak SM, Seo J, Hwang JT, Sung GJ, Song JH, Jeong JH, et al. EGFR-c-Src-mediated HDAC3 phosphorylation exacerbates invasion of breast cancer cells. Cells. 2019;8(8):930.

    CAS  PubMed Central  Google Scholar 

  34. Kwon Y, Kim Y, Jung HS, Jeoung D. Role of HDAC3-miRNA-CAGE network in anti-cancer drug-resistance. Int J Mol Sci. 2018;20(1):51.

    PubMed Central  Google Scholar 

  35. Seo J, Guk G, Park SH, Jeong MH, Jeong JH, Yoon HG, et al. Tyrosine phosphorylation of HDAC3 by Src kinase mediates proliferation of HER2-positive breast cancer cells. J Cell Physiol. 2019;234(5):6428–36.

    CAS  PubMed  Google Scholar 

  36. Zhang F, Qi L, Feng Q, Zhang B, Li X, Liu C, et al. HIPK2 phosphorylates HDAC3 for NF-kappaB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A. 2021;118(28):e2021798118.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26(37):5420–32.

    CAS  PubMed  Google Scholar 

  38. Lkhagva B, Kao YH, Lee TI, Lee TW, Cheng WL, Chen YJ. Activation of class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics. 2018;13(4):376–85.

    PubMed  PubMed Central  Google Scholar 

  39. Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q, et al. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond). 2017;131(15):1841–57.

    CAS  Google Scholar 

  40. He X, Zhang L, Queme LF, Liu X, Lu A, Waclaw RR, et al. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med. 2018;24(3):338–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Siebzehnrubl FA, Raber KA, Urbach YK, Schulze-Krebs A, Canneva F, Moceri S, et al. Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A. 2018;115(37):E8765–74.

    PubMed  PubMed Central  Google Scholar 

  42. Amin SA, Adhikari N, Kotagiri S, Jha T, Ghosh B. Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur J Med Chem. 2019;166:369–80.

    CAS  PubMed  Google Scholar 

  43. Zhao B, Yuan Q, Hou JB, Xia ZY, Zhan LY, Li M, et al. Inhibition of HDAC3 ameliorates cerebral ischemia reperfusion injury in diabetic mice in vivo and in vitro. J Diabetes Res. 2019;2019:8520856.

    PubMed  PubMed Central  Google Scholar 

  44. Tong L, Liang H, Zhuang H, Liu C, Zhang Z. The relationship between HDAC3 and malignant tumors: a mini review. Crit Rev Eukaryot Gene Expr. 2020;30(3):279–84.

    PubMed  Google Scholar 

  45. Adhikari N, Jha T, Ghosh B. Dissecting histone deacetylase 3 in multiple disease conditions: selective inhibition as a promising therapeutic strategy. J Med Chem. 2021;64(13):8827–69.

    CAS  PubMed  Google Scholar 

  46. Ma L, Qi L, Li S, Yin Q, Liu J, Wang J, et al. Aberrant HDAC3 expression correlates with brain metastasis in breast cancer patients. Thorac Cancer. 2020;11(9):2493–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.

    CAS  PubMed  Google Scholar 

  48. Xu G, Zhu H, Zhang M, Xu J. Histone deacetylase 3 is associated with gastric cancer cell growth via the miR-454-mediated targeting of CHD5. Int J Mol Med. 2018;41(1):155–63.

    CAS  PubMed  Google Scholar 

  49. Yang Z, Jiang X, Zhang Z, Zhao Z, Xing W, Liu Y, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther. 2021;28(1–2):141–55.

    CAS  PubMed  Google Scholar 

  50. Zhang L, Liu F, Meng Z, Luo Q, Pan D, Qian Y. Inhibited HDAC3 promotes microRNA-376c-3p to suppress malignant phenotypes of gastric cancer cells by reducing WNT2b. Genomics. 2021;113(6):3512–22.

    CAS  PubMed  Google Scholar 

  51. Wu SM, Jan YJ, Tsai SC, Pan HC, Shen CC, Yang CN, et al. Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol. 2022. https://doi.org/10.1007/s10565-021-09673-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li H, Li H, Waresijiang Y, Chen Y, Li Y, Yu L, et al. Clinical significance of HDAC1, -2 and -3 expression levels in esophageal squamous cell carcinoma. Exp Ther Med. 2020;20(1):315–24.

    PubMed  PubMed Central  Google Scholar 

  53. Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, Machado HR, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer. 2008;8:243.

    PubMed  PubMed Central  Google Scholar 

  54. Nemati M, Ajami N, Estiar MA, Rezapour S, Gavgani RR, Hashemzadeh S, et al. Deregulated expression of HDAC3 in colorectal cancer and its clinical significance. Adv Clin Exp Med. 2018;27(3):305–11.

    PubMed  Google Scholar 

  55. Ren H, Tang L. HDAC3-mediated lncRNA-LOC101928316 contributes to cisplatin resistance in gastric cancer via activating the PI3K-Akt-mTOR pathway. Neoplasma. 2021;68(5):1043–51.

    PubMed  Google Scholar 

  56. Zhang L, Hong Z, Zhang RR, Sun XZ, Yuan YF, Hu J, et al. Bakkenolide A inhibits leukemia by regulation of HDAC3 and PI3K/Akt-related signaling pathways. Biomed Pharmacother. 2016;83:958–66.

    CAS  PubMed  Google Scholar 

  57. Lou T, Zhuang H, Liu C, Zhang Z. HDAC3 positively regulates HE4 expression to promote ovarian carcinoma progression. Arch Biochem Biophys. 2019;675:108044.

    CAS  PubMed  Google Scholar 

  58. Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martinez Garza JH, Garza-Trevino EN. Behind the adaptive and resistance mechanisms of cancer stem cells to TRAIL. Pharmaceutics. 2021;13(7):1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang B, Liu B, Chen D, Setroikromo R, Haisma HJ, Quax WJ. Histone deacetylase inhibitors sensitize TRAIL-induced apoptosis in colon cancer cells. Cancers (Basel). 2019;11(5):645.

    CAS  Google Scholar 

  60. Lombard DB, Cierpicki T, Grembecka J. Combined MAPK pathway and HDAC inhibition breaks melanoma. Cancer Discov. 2019;9(4):469–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Trivedi P, Adhikari N, Amin SA, Jha T, Ghosh B. Design, synthesis and biological screening of 2-aminobenzamides as selective HDAC3 inhibitors with promising anticancer effects. Eur J Pharm Sci. 2018;124:165–81.

    CAS  PubMed  Google Scholar 

  62. Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, et al. Prognosis analysis of histone deacetylases mRNA expression in ovarian cancer patients. J Cancer. 2018;9(23):4547–55.

    PubMed  PubMed Central  Google Scholar 

  63. Hu G, He N, Cai C, Cai F, Fan P, Zheng Z, et al. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology. 2019;19(2):383–9.

    CAS  PubMed  Google Scholar 

  64. Shouksmith AE, Shah F, Grimard ML, Gawel JM, Raouf YS, Geletu M, et al. Identification and characterization of AES-135, a hydroxamic acid-based HDAC inhibitor that prolongs survival in an orthotopic mouse model of pancreatic cancer. J Med Chem. 2019;62(5):2651–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cui Z, Xie M, Wu Z, Shi Y. Relationship between histone deacetylase 3 (HDAC3) and breast cancer. Med Sci Monit. 2018;24:2456–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mirsadeghi L, Haji Hosseini R, Banaei-Moghaddam AM, Kavousi K. EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer. BMC Med Genomics. 2021;14(1):122.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Su W, Zeng L, Chen W. Moscatilin suppresses the breast cancer both in vitro and in vivo by inhibiting HDAC3. Dose Response. 2021;19(1):15593258211001252.

    PubMed  PubMed Central  Google Scholar 

  68. Yang M, Dang X, Tan Y, Wang M, Li X, Li G. I-7ab inhibited the growth of TNBC cells via targeting HDAC3 and promoting the acetylation of p53. Biomed Pharmacother. 2018;99:220–6.

    CAS  PubMed  Google Scholar 

  69. Chen SY, Teng SC, Cheng TH, Wu KJ. miR-1236 regulates hypoxia-induced epithelial-mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3. Cancer Lett. 2016;378(1):59–67.

    CAS  PubMed  Google Scholar 

  70. Ververis K, Karagiannis TC. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis. Am J Transl Res. 2012;4(1):24–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bayat S, Mansoori Derakhshan S, Mansoori Derakhshan N, Shekari Khaniani M, Alivand MR. Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells. J Cell Biochem. 2019;120(6):9172–80.

    CAS  PubMed  Google Scholar 

  72. Lee JY, Kuo CW, Tsai SL, Cheng SM, Chen SH, Chan HH, et al. Inhibition of HDAC3- and HDAC6-promoted survivin expression plays an important role in SAHA-induced autophagy and viability reduction in breast cancer cells. Front Pharmacol. 2016;7:81.

    PubMed  PubMed Central  Google Scholar 

  73. Hanigan TW, Aboukhatwa SM, Taha TY, Frasor J, Petukhov PA. Divergent JNK phosphorylation of HDAC3 in triple-negative breast cancer cells determines HDAC inhibitor binding and selectivity. Cell Chem Biol. 2017;24(11):1356-67 e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Qiao W, Liu H, Liu R, Liu Q, Zhang T, Guo W, et al. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: a meta-analysis. Clin Chim Acta. 2018;483:209–15.

    CAS  PubMed  Google Scholar 

  75. Wei H, Ma W, Lu X, Liu H, Lin K, Wang Y, et al. KDELR2 promotes breast cancer proliferation via HDAC3-mediated cell cycle progression. Cancer Commun (London). 2021. https://doi.org/10.1002/cac2.12180.

    Article  Google Scholar 

  76. Krusche CA, Wulfing P, Kersting C, Vloet A, Bocker W, Kiesel L, et al. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005;90(1):15–23.

    CAS  PubMed  Google Scholar 

  77. Seo J, Min SK, Park HR, Kim DH, Kwon MJ, Kim LS, et al. Expression of histone deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in invasive ductal carcinomas of the breast. J Breast Cancer. 2014;17(4):323–31.

    PubMed  PubMed Central  Google Scholar 

  78. Park SH, Kim H, Kwak S, Jeong JH, Lee J, Hwang JT, et al. HDAC3-ERalpha selectively regulates TNF-alpha-induced apoptotic cell death in MCF-7 human breast cancer cells via the p53 signaling pathway. Cells. 2020;9(5):1280.

    CAS  PubMed Central  Google Scholar 

  79. Oie S, Matsuzaki K, Yokoyama W, Murayama A, Yanagisawa J. HDAC3 regulates stability of estrogen receptor alpha mRNA. Biochem Biophys Res Commun. 2013;432(2):236–41.

    CAS  PubMed  Google Scholar 

  80. Yu S, Gong X, Ma Z, Zhang M, Huang L, Zhang J, et al. Endocrine resistant breast cancer cells with loss of ERalpha expression retain proliferative ability by reducing caspase7-mediated HDAC3 cleavage. Cell Oncol (Dordr). 2020;43(1):65–80.

    CAS  Google Scholar 

  81. Zhao Y, He J, Yang L, Luo Q, Liu Z. Histone deacetylase-3 modification of MicroRNA-31 promotes cell proliferation and aerobic glycolysis in breast cancer and is predictive of poor prognosis. J Breast Cancer. 2018;21(2):112–23.

    PubMed  PubMed Central  Google Scholar 

  82. Feng W, Lu Z, Luo RZ, Zhang X, Seto E, Liao WS, et al. Multiple histone deacetylases repress tumor suppressor gene ARHI in breast cancer. Int J Cancer. 2007;120(8):1664–8.

    CAS  PubMed  Google Scholar 

  83. Darvin P, Sasidharan Nair V, Elkord E. PD-L1 expression in human breast cancer stem cells is epigenetically regulated through posttranslational histone modifications. J Oncol. 2019;2019:3958908.

    PubMed  PubMed Central  Google Scholar 

  84. Fermento ME, Gandini NA, Salomon DG, Ferronato MJ, Vitale CA, Arevalo J, et al. Inhibition of p300 suppresses growth of breast cancer. Role of p300 subcellular localization. Exp Mol Pathol. 2014;97(3):411–24.

    CAS  PubMed  Google Scholar 

  85. Lucas J, Hsieh TC, Halicka HD, Darzynkiewicz Z, Wu JM. Upregulation of PDL1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300mediated NFkappaB signaling. Int J Oncol. 2018;53(4):1469–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu J, He D, Cheng L, Huang C, Zhang Y, Rao X, et al. p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene. 2020;39(19):3939–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hsieh HY, Chuang HC, Shen FH, Detroja K, Hsin LW, Chen CS. Targeting breast cancer stem cells by novel HDAC3-selective inhibitors. Eur J Med Chem. 2017;140:42–51.

    CAS  PubMed  Google Scholar 

  88. Routholla G, Pulya S, Patel T, Abdul Amin S, Adhikari N, Biswas S, et al. Synthesis, biological evaluation, and molecular docking analysis of novel linker-less benzamide based potent and selective HDAC3 inhibitors. Bioorgan Chem. 2021;114:105050.

    CAS  Google Scholar 

  89. Putri AD, Chen PS, Su YL, Lin JP, Liou JP, Hsieh CM. Optimization and development of selective histone deacetylase inhibitor (MPT0B291)-loaded albumin nanoparticles for anticancer therapy. Pharmaceutics. 2021;13(10):1728.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo G, Lin X, Ren S, Wu S, Wang X, Ma L, et al. Development of novel tetrahydroisoquinoline-hydroxamate conjugates as potent dual SERDs/HDAC inhibitors for the treatment of breast cancer. Eur J Med Chem. 2021;226:113870.

    CAS  PubMed  Google Scholar 

  91. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel). 2010;3(9):2751–67.

    CAS  Google Scholar 

  92. Benedetti R, Conte M, Altucci L. Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal. 2015;23(1):99–126.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MA conceived the essay; RR researched the literature and wrote the manuscript; MA, YR, and MHK-A revised the manuscript.

Corresponding authors

Correspondence to Mohammad Hassan Khadem-Ansari or Mohammad Abdi.

Ethics declarations

Conflict of interest

The authors have no financial relationships relevant to this article to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahbari, R., Rasmi, Y., Khadem-Ansari, M.H. et al. The role of histone deacetylase 3 in breast cancer. Med Oncol 39, 84 (2022). https://doi.org/10.1007/s12032-022-01681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01681-4

Keywords

Navigation