Skip to main content
Log in

Heme-regulated inhibitor: an overlooked eIF2α kinase in cancer investigations

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Heme-regulated inhibitor (HRI) kinase is a serine–threonine kinase, controlling the initiation of protein synthesis via phosphorylating α subunit of eIF2 on serine 51 residue, mainly in response to heme deprivation in erythroid cells. However, recent studies showed that HRI is also activated by several diverse signals, causing dysregulations in intracellular homeostatic mechanisms in non-erythroid cells. For instance, it was reported that the decrease in protein synthesis upon the 26S proteasomal inhibition by MG132 or bortezomib is mediated by increased eIF2α phosphorylation in an HRI-dependent manner in mouse embryonic fibroblast cells. The increase in eIF2α phosphorylation level through the activation of HRI upon 26S proteasomal inhibition is believed to protect cells against the buildup of misfolded and ubiquitinated proteins, having the potential to trigger the apoptotic response. In contrast, prolonged and sustained HRI-mediated eIF2α phosphorylation can induce cell death, which may involve ATF4 and CHOP expression. Altogether, these studies suggest that HRI-mediated eIF2α phosphorylation may be cytoprotective or cytotoxic depending on the cells, type, and duration of pharmacological agents used. It is thus hypothesized that both HRI activators, inducing eIF2α phosphorylation or HRI inhibitors causing disturbances in eIF2α phosphorylation, may be effective as novel strategies in cancer treatment if the balance in eIF2α phosphorylation is shifted in favor of autophagic or apoptotic response in cancer cells. It is here aimed to review the role of HRI in various biological mechanisms as well as the therapeutic potentials of recently developed HRI activators and inhibitors, targeting eIF2α phosphorylation in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Burwick N, Aktas BH. The eIF2-alpha kinase HRI: a potential target beyond the red blood cell. Expert Opin Ther Targets. 2017;21(12):1171–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511.

    CAS  PubMed  Google Scholar 

  3. Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, Kaufman RJ, Ramaiah KV. Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry. 2000;39(42):12929–38.

    CAS  PubMed  Google Scholar 

  4. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. The J Biol Chem. 2000;275(32):24881–5.

    CAS  PubMed  Google Scholar 

  5. Lu J, O’Hara EB, Trieselmann BA, Romano PR, Dever TE. The interferon-induced double-stranded RNA-activated protein kinase PKR will phosphorylate serine, threonine, or tyrosine at residue 51 in eukaryotic initiation factor 2alpha. J Biol Chem. 1999;274(45):32198–203.

    CAS  PubMed  Google Scholar 

  6. Lu YN, Kavianpour S, Zhang T, Zhang X, Nguyen D, Thombre R, He L, Wang J. MARK2 phosphorylates eIF2alpha in response to proteotoxic stress. PLoS Biol. 2021;19(3):e3001096.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Suragani RNVS, Zachariah RS, Velazquez JG, Liu SJ, Sun CW, Townes TM, Chen JJ. Heme-regulated eIF2 alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang YC, Li X, Shen Y, Lyu J, Sheng H, Paschen W, Yang W. PERK (protein kinase RNA-like ER kinase) branch of the unfolded protein response confers neuroprotection in ischemic stroke by suppressing protein synthesis. Stroke. 2020;51(5):1570–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, recycle, and move on: proteostasis and trafficking mechanisms in melanoma. Front Oncol. 2016;6:240.

    PubMed  PubMed Central  Google Scholar 

  10. Nam SM, Jeon YJ. Proteostasis in the endoplasmic reticulum: road to cure. Cancers (Basel). 2019;11(11):1793.

    CAS  Google Scholar 

  11. Clemens MJ. PKR–A protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol. 1997;29(7):945–9.

    CAS  PubMed  Google Scholar 

  12. Misra J, Holmes MJ, T. Mirek E, Langevin M, Kim HG, Carlson KR, Watford M, Dong XC, Anthony TG, Wek RC. Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress. Nucleic Acids Res. 2021;49(10):5726–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell. 2020;182(2):404–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nyati S, Chator A, Schinske K, Gregg BS, Ross BD, Rehemtulla A. A Requirement for ZAK kinase activity in canonical TGF-beta signaling. Transl Oncol. 2016;9(6):473–81.

    PubMed  PubMed Central  Google Scholar 

  15. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol. 2004;14(16):1425–35.

    CAS  PubMed  Google Scholar 

  16. Alone PV, Dever TE. Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon. J Biol Chem. 2006;281(18):12636–44.

    CAS  PubMed  Google Scholar 

  17. Kim E, Kim JH, Seo K, Hong KY, An SWA, Kwon J, Lee SV, Jang SK. eIF2A, an initiator tRNA carrier refractory to eIF2alpha kinases, functions synergistically with eIF5B. Cell Mol Life Sci. 2018;75(23):4287–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Somers J, Poyry T, Willis AE. A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol. 2013;45(8):1690–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun. 2020;11(1):4677.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R, Zhou Q. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-beta1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 2021;12(4):334.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 2017;28(11):794–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–4.

    CAS  PubMed  Google Scholar 

  23. Igarashi J, Murase M, Iizuka A, Pichierri F, Martinkova M, Shimizu T. Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem. 2008;283(27):18782–91.

    CAS  PubMed  Google Scholar 

  24. Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood. 2007;109(7):2693–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mense SM, Zhang L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 2006;16(8):681–92.

    CAS  PubMed  Google Scholar 

  26. Rafie-Kolpin M, Chefalo PJ, Hussain Z, Hahn J, Uma S, Matts RL, Chen JJ. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem. 2000;275(7):5171–8.

    CAS  PubMed  Google Scholar 

  27. Chen JJ, London IM. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci. 1995;20(3):105–8.

    CAS  PubMed  Google Scholar 

  28. Lu L, Han AP, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol. 2001;21(23):7971–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukherjee T, Ramaglia V, Abdel-Nour M, Bianchi AA, Tsalikis J, Chau HN, Kalia SK, Kalia LV, Chen JJ, Arnoult D, et al. The eIF2alpha kinase HRI triggers the autophagic clearance of cytosolic protein aggregates. J Biol Chem. 2021;296:100050.

    CAS  PubMed  Google Scholar 

  30. Yerlikaya A, Dokudur H. Investigation of the eIF2alpha phosphorylation mechanism in response to proteasome inhibition in melanoma and breast cancer cells. Mol Biol (Mosk). 2010;44(5):859–66.

    Google Scholar 

  31. Yerlikaya A, Kimball SR, Stanley BA. Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J. 2008;412(3):579–88.

    CAS  PubMed  Google Scholar 

  32. Mellor H, Flowers KM, Kimball SR, Jefferson LS. Cloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase. Biochim Biophys Acta. 1994;1219(3):693–6.

    PubMed  Google Scholar 

  33. Girardin SE, Cuziol C, Philpott DJ, Arnoult D. The eIF2alpha kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 2021;288(10):3094–107.

    CAS  PubMed  Google Scholar 

  34. Abdel-Nour M, Carneiro LAM, Downey J, Tsalikis J, Outlioua A, Prescott D, Da Costa LS, Hovingh ES, Farahvash A, Gaudet RG, et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science. 2019. https://doi.org/10.1126/science.aaw4144.

    Article  PubMed  Google Scholar 

  35. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41(6):898–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fessler E, Eckl EM, Schmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H, Jae LT. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature. 2020;579(7799):433–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, Wiita AP, Xu K, Correia MA, Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature. 2020;579(7799):427–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu S, Suragani RN, Wang F, Han A, Zhao W, Andrews NC, Chen JJ. The function of heme-regulated eIF2alpha kinase in murine iron homeostasis and macrophage maturation. J Clin Invest. 2007;117(11):3296–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramos-Fernandez E, Arrazola MS, Oliva CA, Arredondo SB, Varela-Nallar L, Inestrosa NC. Wnt5a promotes hippocampal postsynaptic development and GluN2B-induced expression via the eIF2alpha HRI kinase. Sci Rep. 2021;11(1):7395.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han AP, Yu C, Lu L, Fujiwara Y, Browne C, Chin G, Fleming M, Leboulch P, Orkin SH, Chen JJ. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 2001;20(23):6909–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pazos M, Andersen ML, Skibsted LH. Heme-mediated production of free radicals via preformed lipid hydroperoxide fragmentation. J Agric Food Chem. 2008;56(23):11478–84.

    CAS  PubMed  Google Scholar 

  42. Chen JJ, Pal JK, Petryshyn R, Kuo I, Yang JM, Throop MS, Gehrke L, London IM. Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2 alpha subunit kinase: homology to protein kinases. PNAS. 1991;88(2):315–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauer BN, Rafie-Kolpin M, Lu L, Han A, Chen JJ. Multiple autophosphorylation is essential for the formation of the active and stable homodimer of heme-regulated eIF2alpha kinase. Biochemistry. 2001;40(38):11543–51.

    CAS  PubMed  Google Scholar 

  44. Lee JM, Lee WH, Kay HY, Kim ES, Moon A, Kim SG. Hemin, an iron-binding porphyrin, inhibits HIF-1alpha induction through its binding with heat shock protein 90. Int J Cancer. 2012;130(3):716–27.

    CAS  PubMed  Google Scholar 

  45. Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The multifaceted role of heme in cancer. Front Oncol. 2019;9:1540.

    PubMed  Google Scholar 

  46. Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational control in cancer. Cold Spring Harb Perspect Biol. 2019;11(7):a032896.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lobo MV, Martin ME, Perez MI, Alonso FJ, Redondo C, Alvarez MI, Salinas M. Levels, phosphorylation status and cellular localization of translational factor eIF2 in gastrointestinal carcinomas. Histochem J. 2000;32(3):139–50.

    CAS  PubMed  Google Scholar 

  48. Uchenunu O, Pollak M, Topisirovic I, Hulea L. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. J Mol Endocrinol. 2019;62(2):R83–103.

    CAS  PubMed  Google Scholar 

  49. Rosenwald IB, Koifman L, Savas L, Chen JJ, Woda BA, Kadin ME. Expression of the translation initiation factors eIF-4E and eIF-2* is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol. 2008;39(6):910–6.

    CAS  PubMed  Google Scholar 

  50. Chen T, Ozel D, Qiao Y, Harbinski F, Chen L, Denoyelle S, He X, Zvereva N, Supko JG, Chorev M, et al. Chemical genetics identify eIF2alpha kinase heme-regulated inhibitor as an anticancer target. Nat Chem Biol. 2011;7(9):610–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 1995;14(15):3828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Marshall L, Kenneth NS, White RJ. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell. 2008;133(1):78–89.

    CAS  PubMed  Google Scholar 

  53. Rosen MD, Woods CR, Goldberg SD, Hack MD, Bounds AD, Yang Y, Wagaman PC, Phuong VK, Ameriks AP, Barrett TD, et al. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. Bioorg Med Chem Lett. 2009;19(23):6548–51.

    CAS  PubMed  Google Scholar 

  54. Palrecha S, Lakade D, Kulkarni A, Pal JK, Joshi M. Computational insights into the interaction of small molecule inhibitors with HRI kinase domain. J Biomol Struct Dyn. 2019;37(7):1715–23.

    CAS  PubMed  Google Scholar 

  55. Burwick N, Zhang MY, de la Puente P, Azab AK, Hyun TS, Ruiz-Gutierrez M, Sanchez-Bonilla M, Nakamura T, Delrow JJ, MacKay VL, et al. The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma. Leuk Res. 2017;55:23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083.

    CAS  PubMed  Google Scholar 

  57. Teng Y, Gao M, Wang J, Kong Q, Hua H, Luo T, Jiang Y. Inhibition of eIF2alpha dephosphorylation enhances TRAIL-induced apoptosis in hepatoma cells. Cell Death Dis. 2014;5:e1060.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Q, Du R, Reis Monteiro Dos Santos GR, Yefidoff-Freedman R, Bohm A, Halperin J, Chorev M, Aktas BH. New activators of eIF2alpha Kinase Heme-Regulated Inhibitor (HRI) with improved biophysical properties. Eur J Med Chem. 2020;187:111973.

    CAS  PubMed  Google Scholar 

  59. Alvarez-Castelao B, Tom Dieck S, Fusco CM, Donlin-Asp P, Perez JD, Schuman EM. The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition. eLife. 2020;9:e52714.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. White MC, Schroeder RD, Zhu K, Xiong K, McConkey DJ. HRI-mediated translational repression reduces proteotoxicity and sensitivity to bortezomib in human pancreatic cancer cells. Oncogene. 2018;37(32):4413–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nowis D, Bugajski M, Winiarska M, Bil J, Szokalska A, Salwa P, Issat T, Was H, Jozkowicz A, Dulak J, et al. Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer. 2008;8:197.

    PubMed  PubMed Central  Google Scholar 

  62. Yang JM, London IM, Chen JJ. Effects of hemin and porphyrin compounds on intersubunit disulfide formation of heme-regulated eIF-2 alpha kinase and the regulation of protein synthesis in reticulocyte lysates. J Biol Chem. 1992;267(28):20519–24.

    CAS  PubMed  Google Scholar 

  63. Yerlikaya A, Okur E. An investigation of the mechanisms underlying the proteasome inhibitor bortezomib resistance in PC3 prostate cancer cell line. Cytotechnology. 2020;72(1):121–30.

    CAS  PubMed  Google Scholar 

  64. Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lonn M, Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, et al. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ. 2015;22(4):597–611.

    CAS  PubMed  Google Scholar 

  65. Lin PH, Chiang MT, Chau LY. Ubiquitin-proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway. Biochim Biophys Acta. 2008;1783(10):1826–34.

    CAS  PubMed  Google Scholar 

  66. Yerlikaya A. Expression of heme oxygenase-1 in response to proteasomal inhibition. Protein Pept Lett. 2012;19(12):1330–3.

    CAS  PubMed  Google Scholar 

  67. Yerlikaya A, Kanbur E. The ubiquitin-proteasome pathway and resistance mechanisms developed against the proteasomal inhibitors in cancer cells. Curr Drug Targets. 2020;21(13):1313–25.

    CAS  PubMed  Google Scholar 

  68. Yerlikaya A, Kanbur E, Stanley BA, Tumer E. The ubiquitin-proteasome pathway and epigenetic modifications in cancer. Anticancer Agents Med Chem. 2021;21(1):20–32.

    CAS  PubMed  Google Scholar 

  69. Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An analysis of the multifaceted roles of heme in the pathogenesis of cancer and related diseases. Cancers. 2021;13(16):4142.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen L, Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005;65(13):5599–606.

    CAS  PubMed  Google Scholar 

  71. Yefidoff-Freedman R, Fan J, Yan L, Zhang Q, Dos Santos GRR, Rana S, Contreras JI, Sahoo R, Wan D, Young J, et al. Development of 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylurea activators of heme-regulated inhibitor as selective activators of the eukaryotic initiation factor 2 alpha (eIF2alpha) phosphorylation arm of the Integrated Endoplasmic Reticulum Stress Response. J Med Chem. 2017;60(13):5392–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem. 2005;280(17):16925–33.

    CAS  PubMed  Google Scholar 

  73. Tian X, Zhang S, Zhou L, Seyhan AA, Hernandez Borrero L, Zhang Y, El-Deiry WS. Targeting the integrated stress response in cancer therapy. Front Pharmacol. 2021;12:747837.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2010;2(6):a000109.

    PubMed  PubMed Central  Google Scholar 

  75. Tornatore L, Sandomenico A, Raimondo D, Low C, Rocci A, Tralau-Stewart C, Capece D, D’Andrea D, Bua M, Boyle E, et al. Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors. Cancer Cell. 2014;26(4):495–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith KH, Budhraja A, Lynch J, Roberts K, Panetta JC, Connelly JP, Turnis ME, Pruett-Miller SM, Schuetz JD, Mullighan CG, et al. The heme-regulated inhibitor pathway modulates susceptibility of poor prognosis B-lineage acute leukemia to BH3-mimetics. Mol Cancer Res. 2021;19(4):636–50.

    CAS  PubMed  Google Scholar 

  77. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Campbell KJ, Dhayade S, Ferrari N, Sims AH, Johnson E, Mason SM, Dickson A, Ryan KM, Kalna G, Edwards J, et al. MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 2018;9(2):19.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AY designed, wrote, and drafted the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Azmi Yerlikaya.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerlikaya, A. Heme-regulated inhibitor: an overlooked eIF2α kinase in cancer investigations. Med Oncol 39, 73 (2022). https://doi.org/10.1007/s12032-022-01668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01668-1

Keywords

Navigation