Skip to main content

Novel molecules as the emerging trends in cancer treatment: an update

Abstract

As per World Health Organization cancer remains as a leading killer disease causing nearly 10 million deaths in 2020. Since the burden of cancer increases worldwide, warranting an urgent search for anti-cancer compounds from natural sources. Secondary metabolites from plants, marine organisms exhibit a novel chemical and structural diversity holding a great promise as therapeutics in cancer treatment. These natural metabolites target only the cancer cells and the normal healthy cells are left unharmed. In the emerging trends of cancer treatment, the natural bioactive compounds have long become a part of cancer chemotherapy. In this review, we have tried to compile about eight bioactive compounds from plant origin viz. combretastatin, ginsenoside, lycopene, quercetin, resveratrol, silymarin, sulforaphane and withaferin A, four marine-derived compounds viz. bryostatins, dolastatins, eribulin, plitidepsin and three microorganisms viz. Clostridium, Mycobacterium bovis and Streptococcus pyogenes with their well-established anticancer potential, mechanism of action and clinical establishments are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not Applicable.

Code availability

Not Applicable.

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–89.

    Article  CAS  Google Scholar 

  3. Aizawa K, Liu C, Tang S, et al. Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation. Int J Cancer. 2016;139:1171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fisher B. Biological research in the evolution of cancer surgery: a personal perspective. Cancer Res. 2008;68(24):10007–20. https://doi.org/10.1158/0008-5472.CAN-08-0186.

    Article  CAS  PubMed  Google Scholar 

  5. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frei E. Curative cancer chemotherapy. Cancer Res. 1985;45(12 Part 1):6523–37.

    PubMed  Google Scholar 

  7. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

    Article  CAS  PubMed  Google Scholar 

  9. Deli T, Orosz M, Jakab A. Hormone replacement therapy in cancer survivors—review of the literature. Pathol Oncol Res. 2020;26(1):63–78. https://doi.org/10.1007/s12253-018-00569-x.

    Article  CAS  PubMed  Google Scholar 

  10. Chae YC, Kim JH. Cancer stem cell metabolism: target for cancer therapy. BMB Rep. 2018;51(7):319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson TM. Perspective on precision medicine in oncology. Pharmacother J Hum Pharmacol Drug Ther. 2017;37(9):988–9.

    Article  Google Scholar 

  12. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.

    Article  CAS  PubMed  Google Scholar 

  13. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed. 2017;7(12):1129–50.

    Article  Google Scholar 

  14. Khalifa SA, Elias N, Farag MA, Chen L, Saeed A, Hegazy ME, Moustafa MS, El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR. Marine natural products: a source of novel anticancer drugs. Mar Drugs. 2019;17(9):491.

    Article  CAS  PubMed Central  Google Scholar 

  15. Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59(6):365–78.

    Article  CAS  PubMed  Google Scholar 

  16. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  17. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whisner CM, Aktipis CA. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep. 2019;8(1):42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ravichandra VD, Ramesh C, Swamy MK, Purushotham B, Rudramurthy GR. Anticancer plants: chemistry, pharmacology, and potential applications. In: Akhtar M, Swamy M, editors. Anticancer plants: properties and application. Singapore: Springer; 2018. https://doi.org/10.1007/978-981-10-8548-2_21.

    Chapter  Google Scholar 

  20. Karatoprak GŞ, Küpeli AE, Genç Y, Bardakci H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: an overview of structure, probable mechanisms of action and potential applications. Molecules (Basel, Switzerland). 2020;25(11):2560. https://doi.org/10.3390/molecules25112560.

    Article  CAS  Google Scholar 

  21. Lin CM, Singh SB, Chu PS, Dempy RO, Schmidt JM, Petit GR, Hamel E. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure—activity study. Mol Pharmcol. 1988;34(2):200–8.

    CAS  Google Scholar 

  22. Mikstacka R, Stefanski T, Rozanski J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell Mol Biol Lett. 2013;18:368–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bukhari SNA, Kumar GB, Revankar HM, Qin HL. Development of combretastatin as a potent tubulin polymerization inhibitors. Bioorg Chem. 2017;72:130–47.

    Article  CAS  PubMed  Google Scholar 

  24. Shan Y, Zhang J, Wang M, Dong Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr Med Chem. 2011;18:523–38.

    Article  CAS  PubMed  Google Scholar 

  25. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–65. https://doi.org/10.1038/nrc1317.

    Article  CAS  PubMed  Google Scholar 

  26. Gonalez M, Ellahioui Y, A’lvarez R, Gallego-Yerga L, Caballero E, Vincente-Blazquez A, et al. The Masked Polar Group Incorporation (MGPI) strategy in grug design: Effects of nitrogen substitutions on combretastatin and isocombretastatin tubulin inhibitors. Molecules. 2019;24:4319.

    Article  Google Scholar 

  27. Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D. Combretastatin-inspired heterocycles as antitubulin anticancer agents. ACS Omega. 2018;3:9754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banerjee S, Wand Z, Mohammad M, Sarkar FH, Mohammad RM. Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod. 2008;71(3):492–6.

    Article  CAS  PubMed  Google Scholar 

  29. Popovich DG, Yeo C, Zhang W. Ginsenosides derived from Asian (Panax ginseng), American Ginseng (Panax quinquefolius) and potential cytoactivity. Int J Biomed Pharm Sci. 2012;6(1):56–62.

    Google Scholar 

  30. Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry. 2014;106:7–24. https://doi.org/10.1016/j.phytochem.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  31. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep. 2011;28(3):467–95. https://doi.org/10.1039/c0np00057d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sodrul I, Wang C, Chen X, Du J, Sun H. Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. Oncotarget. 2017;9(2):2931–50. https://doi.org/10.18632/ncotarget.23407.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen H, Yang H, Fan D, Deng J. The anticancer activity and mechanisms of ginsenosides: an updated review. eFood. 2020;1(3):226–41.

    Article  Google Scholar 

  34. Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med. 2019;14:48. https://doi.org/10.1186/s13020-019-0270-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res. 2013;37(2):167–75. https://doi.org/10.5142/jgr.2013.37.167.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med (New York, NY). 2011;17(1):45–9. https://doi.org/10.1089/acm.2010.0065.

    Article  Google Scholar 

  37. Yun TK, Choi SY. A case-control study of ginseng intake and cancer. Int J Epidemiol. 1990;19(4):871–6. https://doi.org/10.1093/ije/19.4.871.

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Wang Z, Huang Y, O’Barr SA, Wong RA, Yeung S, Chow MS. Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evid-Based Complement Altern Med eCAM. 2014. https://doi.org/10.1155/2014/168940.

    Article  Google Scholar 

  39. Fishbein AB, Wang CZ, Li XL, Mehendale SR, Sun S, Aung HH, Yuan CS. Asian ginseng enhances the anti-proliferative effect of 5-fluorouracil on human colorectal cancer: comparison between white and red ginseng. Arch Pharmacal Res. 2009;32(4):505–13. https://doi.org/10.1007/s12272-009-1405-9.

    Article  CAS  Google Scholar 

  40. Choi CH, Kang G, Min YD. Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med. 2003;69(3):235–40. https://doi.org/10.1055/s-2003-38483.

    Article  CAS  PubMed  Google Scholar 

  41. Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, et al. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharmacal Res. 2009;32(5):755–65. https://doi.org/10.1007/s12272-009-1515-4.

    Article  CAS  Google Scholar 

  42. Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, et al. Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol. 2010;631(1–3):1–9. https://doi.org/10.1016/j.ejphar.2009.12.018.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Z, Jiang H, Zhu X, Liu X, Li J. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother Biomed Pharmacother. 2017;89:227–32. https://doi.org/10.1016/j.biopha.2017.02.038.

    Article  CAS  PubMed  Google Scholar 

  44. Sun C, Yu Y, Wang L, Wu B, Xia L, Feng F, Ling Z, Wang S. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro. J Exp Clin Cancer Res CR. 2016;35:32. https://doi.org/10.1186/s13046-015-0274-y.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with Ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology. 2016;280(2):630–9. https://doi.org/10.1148/radiol.2016150719.

    Article  PubMed  Google Scholar 

  46. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, et al. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull. 1995;18(9):1197–202. https://doi.org/10.1248/bpb.18.1197.

    Article  CAS  PubMed  Google Scholar 

  47. Wang D, Wu C, Liu D, Zhang L, Long G, Hu G, Sun W. Ginsenoside Rg3 inhibits migration and invasion of nasopharyngeal carcinoma cells and suppresses epithelial mesenchymal transition. BioMed Res Int. 2019;2019:1–11.

    CAS  Google Scholar 

  48. Xia T, Wang YN, Zhou CX, Wu LM, Liu Y, Zeng QH, et al. Ginsenoside Rh2 and Rg3 inhibit cell proliferation and induce apoptosis by increasing mitochondrial reactive oxygen species in human leukemia Jurkat cells. Mol Med Rep. 2017;15(6):3591–8. https://doi.org/10.3892/mmr.2017.6459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia T, Wang J, Wang Y, Wang Y, Cai J, Wang M, et al. Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells. Oncotarget. 2016;7(19):27336–49. https://doi.org/10.18632/oncotarget.8285.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sin S, Kim SY, Kim SS. Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol. 2012;41(5):1669–74. https://doi.org/10.3892/ijo.2012.1604.

    Article  CAS  PubMed  Google Scholar 

  51. Mirahmadi M, Azimi-Hashemi S, Saburi E, Kamali H, Pishbin M, Hadizadeh F. Potential inhibitory effect of lycopene on prostate cancer. Biomed Pharmacother Biomed Pharmacother. 2020;129:110459. https://doi.org/10.1016/j.biopha.2020.110459.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta M, Panizai M, Tareen MF, Ortega-Martinez S, Doreulee N. An overview on novel antioxidant and anti-cancer properties of lycopene: a comprehensive review. GMJ Medicine. 2018;2(1):45–50.

    Article  Google Scholar 

  53. Qi WJ, Sheng WS, Peng C, Xiaodong M, Yao TZ. Investigating into anti-cancer potential of lycopene: molecular targets. Biomed Pharmacother. 2021;138:111546.

    Article  CAS  PubMed  Google Scholar 

  54. Bhuvaneswari V, Nagini S. Lycopene: a review of its potential as an anticancer agent. Curr Med Chem Anticancer Agents. 2005;5(6):627–35. https://doi.org/10.2174/156801105774574667.

    Article  CAS  PubMed  Google Scholar 

  55. Trejo-Solís C, Pedraza-Chaverrí J, Torres-Ramos M, Jiménez-Farfán D, Cruz Salgado A, Serrano-García N, et al. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid-Based Complement Altern Med eCAM. 2013. https://doi.org/10.1155/2013/705121.

    Article  Google Scholar 

  56. Camara M, De Cortes S-M, Fernandez-Ruiz V, Camara RM, Manzoor S, Caceres JO. Lycopene: a review of chemical and biological activity related to beneficial health effects. Stud Nat Prod Chem. 2013;40:383–426.

    Article  CAS  Google Scholar 

  57. Johary A, Jain V, Misra S. Role of lycopene in the prevention of cancer. Int J Nutr Pharmacol Neurol Dis. 2012;2:167–70.

    Article  CAS  Google Scholar 

  58. Li D, Chen L, Zhao W, Hao J, An R. MicroRNA-let-7f-1 is induced by lycopene and inhibits cell proliferation and triggers apoptosis in prostate cancer. Mol Med Rep. 2016;13(3):2708–14. https://doi.org/10.3892/mmr.2016.4841.

    Article  CAS  PubMed  Google Scholar 

  59. Yang CM, Yen YT, Huang CS, Hu ML. Growth inhibitory efficacy of lycopene and β-carotene against androgen-independent prostate tumor cells xenografted in nude mice. Mol Nutr Food Res. 2011;55(4):606–12. https://doi.org/10.1002/mnfr.201000308.

    Article  CAS  PubMed  Google Scholar 

  60. Gong X, Marisiddaiah R, Zaripheh S, Wiener D, Rubin LP. Mitochondrial β-Carotene 9’,10’ oxygenase modulates prostate cancer growth via NF-κB inhibition: a lycopene-independent function. Mol Cancer Res MCR. 2016;14(10):966–75. https://doi.org/10.1158/1541-7786.MCR-16-0075.

    Article  CAS  PubMed  Google Scholar 

  61. Cui Y, Shikany JM, Liu S, Shagufta Y, Rohan TE. Selected antioxidants and risk of hormone receptor-defined invasive breast cancers among postmenopausal women in the Women’s Health Initiative Observational Study. Am J Clin Nutr. 2008;87(4):1009–18. https://doi.org/10.1093/ajcn/87.4.1009.

    Article  CAS  PubMed  Google Scholar 

  62. Şahin K, Ali S, Sahin N, Orhan C, Kucuk O. Chapter 5 lycopene: multitargeted applications in cancer therapy. London: InTech; 2018.

    Google Scholar 

  63. Al-Malki AL, Moselhy SS, Refai MY. Synergistic effect of lycopene and tocopherol against oxidative stress and mammary tumorigenesis induced by 7,12-dimethyl[a]benzanthracene in female rats. Toxicol Ind Health. 2012;28(6):542–8. https://doi.org/10.1177/0748233711416948.

    Article  CAS  PubMed  Google Scholar 

  64. Kim MJ, Kim H. Anticancer effect of lycopene in gastric carcinogenesis. J Cancer Prev. 2015;20(2):92–6. https://doi.org/10.15430/JCP.2015.20.2.92.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jang SH, Lim JW, Morio T, Kim H. Lycopene inhibits Helicobacter pylori-induced ATM/ATR-dependent DNA damage response in gastric epithelial AGS cells. Free Radical Biol Med. 2012;52(3):607–15. https://doi.org/10.1016/j.freeradbiomed.2011.11.010.

    Article  CAS  Google Scholar 

  66. Ip BC, Wang XD. Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients. 2013;6(1):124–62. https://doi.org/10.3390/nu6010124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ip BC, Liu C, Ausman LM, von Lintig J, Wang XD. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice. Cancer Prev Res (Philadelphia, PA). 2014;7(12):1219–27. https://doi.org/10.1158/1940-6207.CAPR-14-0154.

    Article  CAS  Google Scholar 

  68. Brock KE, Ke L, Gridley G, Chiu BC, Ershow AG, Lynch CF, Graubard BI, Cantor KP. Fruit, vegetables, fibre and micronutrients and risk of US renal cell carcinoma. Br J Nutr. 2012;108(6):1077–85. https://doi.org/10.1017/S0007114511006489.

    Article  CAS  PubMed  Google Scholar 

  69. Okajima E, Ozono S, Endo T, Majima T, Tsutsumi M, Fukuda T, et al. Chemopreventive efficacy of piroxicam administered alone or in combination with lycopene and beta-carotene on the development of rat urinary bladder carcinoma after N-butyl-N-(4-hydroxybutyl) nitrosamine treatment. Jpn J Cancer Res Gann. 1997;88(6):543–52. https://doi.org/10.1111/j.1349-7006.1997.tb00417.x.

    Article  CAS  PubMed  Google Scholar 

  70. Lian F, Smith DE, Ernst H, Russell RM, Wang XD. Apo-10’-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis. 2007;28(7):1567–74. https://doi.org/10.1093/carcin/bgm076.

    Article  CAS  PubMed  Google Scholar 

  71. Kim DJ, Takasuka N, Kim JM, Sekine K, Ota T, Asamoto M, et al. Chemoprevention by lycopene of mouse lung neoplasia after combined initiation treatment with DEN, MNU and DMH. Cancer Lett. 1997;120(1):15–22. https://doi.org/10.1016/s0304-3835(97)00281-4.

    Article  CAS  PubMed  Google Scholar 

  72. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother Biomed Pharmacother. 2020;121:109604.

    Article  CAS  PubMed  Google Scholar 

  73. Middleton E. Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol. 1998;439:175–82. https://doi.org/10.1007/978-1-4615-5335-9_13.

    Article  CAS  PubMed  Google Scholar 

  74. Dangles O, Dufoura C, Fargeixa G. Inhibition of lipid peroxidation by quercetin and quercetin derivatives: antioxidant and prooxidant effects. J Chem Soc Perkin Trans. 2000;2:1215–22.

    Article  Google Scholar 

  75. D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256–71. https://doi.org/10.1016/j.fitote.2015.09.018.

    Article  CAS  PubMed  Google Scholar 

  76. Maalik A, Khan FA, Mumtaz A, Mahmood A, Azhar S, Saira A, et al. Pharmacological applications of quercetin and its derivatives: a short review. Trop J Pharm Res. 2014;13:1561–6. https://doi.org/10.4314/tjpr.v13i9.26.

    Article  CAS  Google Scholar 

  77. Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol. 2019;10:51. https://doi.org/10.3389/fimmu.2019.00051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem. 2009;106(1):73–82. https://doi.org/10.1002/jcb.21977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng XH, Song HY, Zhou YF, Yuan GY, Zheng FJ. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Exp Ther Med. 2013;6:1155–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boly R, Gras T, Lamkami T, Guissou P, Serteyn D, Kiss R, Dubois J. Quercetin inhibits a large panel of kinases implicated in cancer cell biology. Int J Oncol. 2011;38:833–42.

    CAS  PubMed  Google Scholar 

  81. Primikyri A, Chatziathanasiadou MV, Karali E, Kostaras E, Mantzaris MD, Hatzimichael E, et al. Direct binding of Bcl-2 family proteins by quercetin triggers its pro-apoptotic activity. ACS Chem Biol. 2014;9(12):2737–41. https://doi.org/10.1021/cb500259e.

    Article  CAS  PubMed  Google Scholar 

  82. Naimi A, Entezari A, Hagh MF, Hassanzadeh A, Saraei R, Solali S. Quercetin sensitizes human myeloid leukemia KG-1 cells against TRAIL-induced apoptosis. J Cell Physiol. 2019;234(8):13233–41. https://doi.org/10.1002/jcp.27995.

    Article  CAS  PubMed  Google Scholar 

  83. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. https://doi.org/10.3390/ijms20133177.

    Article  CAS  PubMed Central  Google Scholar 

  84. Granato M, Rizzello C, Gilardini Montani MS, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signalling pathways. J Nutr Biochem. 2017;41:124–36.

    Article  CAS  PubMed  Google Scholar 

  85. Wang K, Liu R, Li J, Mao J, Lei Y, Wu J, et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1alpha-mediated signalling. Autophagy. 2011;7:966–78.

    Article  CAS  PubMed  Google Scholar 

  86. Liu Y, Gong W, Yang ZY, Zhou XS, Gong C, Zhang TR, et al. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis Int J Program Cell Death. 2017;22:544–57.

    Article  CAS  Google Scholar 

  87. Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signalling pathways. PLoS One. 2017;7:e47516.

    Article  Google Scholar 

  88. Chang JH, Lai SL, Chen WS, Hung WY, Chow JM, Hsiao M, et al. Quercetin supresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochem Biophys Acta Mol Cell Res. 2017;1864:1746–58.

    Article  CAS  Google Scholar 

  89. Yu D, Ye T, Xiang Y, Shi Z, Zhang J, Lou B, et al. Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial-mesenchymal transition, expression of MMP by inhibiting STAT3 signalling in pancreatic cancer cells. Onco Ther. 2017;10:4719–29.

    Article  Google Scholar 

  90. Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, et al. Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients. 2016;8(9):529. https://doi.org/10.3390/nu8090529.

    Article  CAS  PubMed Central  Google Scholar 

  91. Takaoka M. Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Nippon Kagaku Kaishi. 1939;60:1090–100.

    Article  Google Scholar 

  92. Nonomura S, Kanagawa H, Makimoto A. Chemical constituents of polygonaceous plants. i. studies on the components of ko-j o-kon. (Polygonum cuspidatum sieb. et zucc.). Yakugaku Zasshi J Pharm Soc Japan. 1963;83:988–90.

    Article  CAS  Google Scholar 

  93. Shankar S, Singh G, Srivastava RK. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci. 2007;12:4839–54. https://doi.org/10.2741/2432.

    Article  CAS  PubMed  Google Scholar 

  94. Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002;50(11):3337–40. https://doi.org/10.1021/jf0112973.

    Article  CAS  PubMed  Google Scholar 

  95. Careri M, Corradini C, Elviri L, Nicoletti I, Zagnoni I. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J Agric Food Chem. 2003;51(18):5226–31. https://doi.org/10.1021/jf034149g.

    Article  CAS  PubMed  Google Scholar 

  96. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet (London, England). 1992;339(8808):1523–6. https://doi.org/10.1016/0140-6736(92)91277-f.

    Article  CAS  Google Scholar 

  97. Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol. 2012;3:141. https://doi.org/10.3389/fphar.2012.00141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer. 2014;21(3):R209–25. https://doi.org/10.1530/ERC-13-0171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wadsworth TL, Koop DR. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 2647 macrophages. Biochem Pharmacol. 1999;57(8):941–9. https://doi.org/10.1016/s0006-2952(99)00002-7.

    Article  CAS  PubMed  Google Scholar 

  100. Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radical Biol Med. 1999;27(1–2):160–9. https://doi.org/10.1016/s0891-5849(99)00063-5.

    Article  CAS  Google Scholar 

  101. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: evidence from clinical studies. Med Res Rev. 2019;39(5):1851–91. https://doi.org/10.1002/med.21565.

    Article  CAS  PubMed  Google Scholar 

  102. Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomás-Barberán FA, García-Conesa MT, Espín JC. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des. 2013;19(34):6064–93. https://doi.org/10.2174/13816128113199990407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 2008;269(2):243–61. https://doi.org/10.1016/j.canlet.2008.03.057.

    Article  CAS  PubMed  Google Scholar 

  104. Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK, et al. Resveratrol, a multi targeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer. 2010;127(2):257–68. https://doi.org/10.1002/ijc.25041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, et al. The role of resveratrol in cancer therapy. Int J Mol Sci. 2017;18(12):2589. https://doi.org/10.3390/ijms18122589.

    Article  CAS  PubMed Central  Google Scholar 

  106. Berretta M, Bignucolo A, Di Francia R, Comello F, Facchini G, Ceccarelli M, et al. Resveratrol in cancer patients: from bench to bedside. Int J Mol Sci. 2020;21(8):2945. https://doi.org/10.3390/ijms21082945.

    Article  CAS  PubMed Central  Google Scholar 

  107. Kalra N, Roy P, Prasad S, Shukla Y. RETRACTED: Resveratrol induces apoptosis involving mitochondrial pathways in mouse skin tumorigenesis. Life Sci. 2008;82(7–8):348–58. https://doi.org/10.1016/j.lfs.2007.11.006(RetractionpublishedLifeSci.2019Sep15;233:116691LifeSci.2016Jul15;157:107).

    Article  CAS  PubMed  Google Scholar 

  108. Boily G, He XH, Pearce B, Jardine K, McBurney MW. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene. 2009;28(32):2882–93. https://doi.org/10.1038/onc.2009.147.

    Article  CAS  PubMed  Google Scholar 

  109. Sirerol JA, Feddi F, Mena S, Rodriguez ML, Sirera P, Aupí M, et al. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis. Free Radical Biol Med. 2015;85:1–11. https://doi.org/10.1016/j.freeradbiomed.2015.03.027.

    Article  CAS  Google Scholar 

  110. Jin X, Wei Y, Liu Y, Lu X, Ding F, Wang J, Yang S. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer. Cancer Med. 2019;8(3):1246–57. https://doi.org/10.1002/cam4.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li D, Wang G, Jin G, Yao K, Zhao Z, Bie L, et al. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med. 2019;43(1):630–40. https://doi.org/10.3892/ijmm.2018.3969.

    Article  CAS  PubMed  Google Scholar 

  112. Bishayee A, Waghray A, Barnes KF, Mbimba T, Bhatia D, Chatterjee M, Darvesh AS. Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharm Res. 2010;27(6):1080–91. https://doi.org/10.1007/s11095-010-0144-4.

    Article  CAS  PubMed  Google Scholar 

  113. Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK, et al. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(6):2190–202. https://doi.org/10.1158/1078-0432.ccr-03-0105.

    Article  CAS  Google Scholar 

  114. Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Can Res. 2010;70(22):9003–11. https://doi.org/10.1158/0008-5472.CAN-10-2364.

    Article  CAS  Google Scholar 

  115. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol. 2013;160(5):714–7. https://doi.org/10.1111/bjh.12154.

    Article  CAS  PubMed  Google Scholar 

  116. Chambers CS, Holečková V, Petrásková L, Biedermann D, Valentová K, Buchta M, Křen V. The silymarin composition… and why does it matter??? Food Res Int (Ottawa, Ont). 2017;100(3):339–53. https://doi.org/10.1016/j.foodres.2017.07.017.

    Article  CAS  Google Scholar 

  117. Valková V, Ďúranová H, Bilčíková J, Habán M. Milk thistle (Silybum marianum): a valuable medicinal plant with several therapeutic purposes. J Microbiol Biotechnol Food Sci. 2020. https://doi.org/10.15414/jmbfs.2020.9.4.836-843.

    Article  Google Scholar 

  118. Delmas D, Xiao J, Vejux A, Aires V. Silymarin and cancer: a dual strategy in both in chemoprevention and chemosensitivity. Molecules (Basel, Switzerland). 2020;25(9):2009. https://doi.org/10.3390/molecules25092009.

    Article  CAS  Google Scholar 

  119. Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008;269(2):352–62. https://doi.org/10.1016/j.canlet.2008.03.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 2006;26(6B):4457–98.

    CAS  PubMed  Google Scholar 

  121. Féher J, Lengyel G. Silymarin in the prevention and treatment of liver diseases and primary liver cancer. Curr Pharm Biotechnol. 2012;13(1):210–7. https://doi.org/10.2174/138920112798868818.

    Article  PubMed  Google Scholar 

  122. Deep G, Agarwal R. Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr Cancer Ther. 2007;12:130–45. https://doi.org/10.1177/1534735407301441.

    Article  CAS  Google Scholar 

  123. Singh RP, Agarwal R. Prostate cancer chemoprevention by silibinin: bench to bedside. Mol Carcinog. 2006;45(6):436–42. https://doi.org/10.1002/mc.20223.

    Article  CAS  PubMed  Google Scholar 

  124. Lah JJ, Cui W, Hu KQ. Effects and mechanisms of silibinin on human hepatoma cell lines. World J Gastroenterol. 2007;13(40):5299–305. https://doi.org/10.3748/wjg.v13.i40.5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li LH, Wu LJ, Jiang YY, Tashiro S, Onodera S, Uchiumi F, Ikejima T. Silymarin enhanced cytotoxic effect of anti-Fas agonistic antibody CH11 on A375–S2 cells. J Asian Nat Prod Res. 2007;9(6–8):593–602. https://doi.org/10.1080/10286020600882502.

    Article  CAS  PubMed  Google Scholar 

  126. Dzubák P, Hajdúch M, Gazák R, Svobodová A, Psotová J, Walterová D, Sedmera P, Kren V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem. 2006;14(11):3793–810. https://doi.org/10.1016/j.bmc.2006.01.035.

    Article  CAS  PubMed  Google Scholar 

  127. Zhong X, Zhu Y, Lu Q, Zhang J, Ge Z, Zheng S. Silymarin causes caspases activation and apoptosis in K562 leukemia cells through inactivation of Akt pathway. Toxicology. 2006;227(3):211–6. https://doi.org/10.1016/j.tox.2006.07.021.

    Article  CAS  PubMed  Google Scholar 

  128. Tyagi A, Singh RP, Agarwal C, Agarwal R. Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2. Carcinogenesis. 2006;27(11):2269–80. https://doi.org/10.1093/carcin/bgl098.

    Article  CAS  PubMed  Google Scholar 

  129. Jiang C, Agarwal R, Lü J. Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun. 2000;276(1):371–8. https://doi.org/10.1006/bbrc.2000.3474.

    Article  CAS  PubMed  Google Scholar 

  130. Zi X, Feyes DK, Agarwal R. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clin Cancer Res Off J Am Assoc Cancer Res. 1998;4(4):1055–64.

    CAS  Google Scholar 

  131. Chen PN, Hsieh YS, Chiang CL, Chiou HL, Yang SF, Chu SC. Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. J Dent Res. 2006;85(3):220–5. https://doi.org/10.1177/154405910608500303.

    Article  CAS  PubMed  Google Scholar 

  132. Chu SC, Chiou HL, Chen PN, Yang SF, Hsieh YS. Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol Carcinog. 2004;40(3):143–9. https://doi.org/10.1002/mc.20018.

    Article  CAS  PubMed  Google Scholar 

  133. Hsieh YS, Chu SC, Yang SF, Chen PN, Liu YC, Lu KH. Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis. 2007;28(5):977–87. https://doi.org/10.1093/carcin/bgl221.

    Article  CAS  PubMed  Google Scholar 

  134. Lee SO, Jeong YJ, Im HG, Kim CH, Chang YC, Lee IS. Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochem Biophys Res Commun. 2007;354(1):165–71. https://doi.org/10.1016/j.bbrc.2006.12.181.

    Article  CAS  PubMed  Google Scholar 

  135. Kiruthiga PV, Shafreen RB, Pandian SK, Devi KP. Silymarin protection against major reactive oxygen species released by environmental toxins: exogenous H2O2 exposure in erythrocytes. Basic Clin Pharmacol Toxicol. 2007;100(6):414–9. https://doi.org/10.1111/j.1742-7843.2007.00069.x.

    Article  CAS  PubMed  Google Scholar 

  136. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56(1):5–51. https://doi.org/10.1016/s0031-9422(00)00316-2.

    Article  CAS  PubMed  Google Scholar 

  137. Moreno DA, Carvajal M, López-Berenguer C, García-Viguera C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal. 2006;41(5):1508–22. https://doi.org/10.1016/j.jpba.2006.04.003.

    Article  CAS  PubMed  Google Scholar 

  138. Matusheski NV, Jeffery EH. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem. 2001;49(12):5743–9. https://doi.org/10.1021/jf010809a.

    Article  CAS  PubMed  Google Scholar 

  139. Bricker GV, Riedl KM, Ralston RA, Tober KL, Oberyszyn TM, Schwartz SJ. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Mol Nutr Food Res. 2014;58(10):1991–2000. https://doi.org/10.1002/mnfr.201400104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nandini DB, Rao RS, Deepak BS, Reddy PB. Sulforaphane in broccoli: the green chemoprevention!! Role in cancer prevention and therapy. J Oral Maxillofacial Pathol JOMFP. 2020;24(2):405. https://doi.org/10.4103/jomfp.JOMFP_126_19.

    Article  CAS  Google Scholar 

  141. Vaiopoulos AG, Athanasoula K, Papavassiliou AG. Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges. Biochem Biophys Acta. 2014;1842(7):971–80. https://doi.org/10.1016/j.bbadis.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  142. Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, Yu TW, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res. 2015;59(3):424–33. https://doi.org/10.1002/mnfr.201400674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int J Mol Sci. 2015;16(12):29732–43. https://doi.org/10.3390/ijms161226195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marks PA, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem. 2009;107(4):600–8. https://doi.org/10.1002/jcb.22185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One. 2012;7:e37748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Roodi N, Bailey L, Kao W, Verrier C, Yee C, Dupont W, Parl F. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl Cancer Inst. 1995;87:446–51. https://doi.org/10.1093/jnci/87.6.446.

    Article  CAS  PubMed  Google Scholar 

  147. Li Y, Yuan YY, Meeran SM, Tollefsbol TO. Synergetic epigenetic reactivation of estrogen receptor—alpha(ERalpha) by combined green—tea polyphenol and histone deacetylase inhibitor in ERalpha—negative breast cancer cells. Mol Cancer. 2010. https://doi.org/10.1186/1476-4598-9-274.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigentic repression of hTERT expression in human breast cancer cell lines. PLoS ONE. 2010;5:e11457.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Li Y, Buckhaults P, Li S, Tollefsbol T. Temporal efficacy of a sulforaphane-based broccoli sprout diet in prevention of breast cancer through modulation of epigenetic mechanisms. Cancer Prev Res (Philadelphia, PA). 2018;11(8):451–64. https://doi.org/10.1158/1940-6207.CAPR-17-0423.

    Article  CAS  Google Scholar 

  150. Wang M, Chen S, Wang S, Sun D, Chen J, Li Y, Han W, Yang X, Gao HQ. Effects of phytochemicals sulforaphane on Uridine Diphosphate–Glucuronosyltransferase expression as well as cell—cycle arrest and apoptosis in human colon cancer CaCo-2 cells. Chin J Physiol. 2012;55:134–44.

    CAS  PubMed  Google Scholar 

  151. Zeng H, Trujillo ON, Moyer MP, Botnen JH. Prolonged sulforaphane treatment activates survival signalling in nontumorigenic NCM460 colon cells but apoptotic signalling in tumorigenic HCT116 colon cells. Nutr Cancer. 2011;63:248–55.

    Article  CAS  PubMed  Google Scholar 

  152. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005;280(20):19911–24. https://doi.org/10.1074/jbc.M412443200.

    Article  CAS  PubMed  Google Scholar 

  153. Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis. 2006;27(4):811–9. https://doi.org/10.1093/carcin/bgi265.

    Article  CAS  PubMed  Google Scholar 

  154. Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, Singh SVD. L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis. 2007;28(1):151–62. https://doi.org/10.1093/carcin/bgl144.

    Article  CAS  PubMed  Google Scholar 

  155. Ullah MF. Sulforaphane (SFN): an isothiocyanate in a cancer chemoprevention paradigm. Medicines (Basel). 2015;2(3):141–56. https://doi.org/10.3390/medicines2030141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8(4):945–54.

    CAS  Google Scholar 

  157. Pinz S, Unser S, Rascle A. Natural chemopreventive agent sulphoraphane inhibits STAT-5 activity. PLoS ONE. 2014;9:e99391.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Xu C, Shen G, Chen C, Gélinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005;24(28):4486–95. https://doi.org/10.1038/sj.onc.1208656.

    Article  CAS  PubMed  Google Scholar 

  159. Wang F, Chen L, Zhu S, Wang S, Chen C, Zhang W, et al. SFN induces apoptosis of acute human leukaemic cells through modulation of Bax, Bcl-2, Caspase-3. Int J Pharmcol. 2018;14:369–76.

    Article  CAS  Google Scholar 

  160. Prakash J, Gupta SK, Kochupillai V, Singh N, Gupta YK, Joshi S. Chemopreventive activity of Withania somnifera in experimentally induced fibrosarcoma tumours in Swiss albino mice. Phytother Res PTR. 2001;15(3):240–4. https://doi.org/10.1002/ptr.779.

    Article  CAS  PubMed  Google Scholar 

  161. Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S. Withania Somnifera (Ashwagandha) and withaferin a: potential in integrative oncology. Int J Mol Sci. 2019;20(21):5310. https://doi.org/10.3390/ijms20215310.

    Article  CAS  PubMed Central  Google Scholar 

  162. Devi PU, Sharada AC, Solomon FE, Kamath MS. In vivo growth inhibitory effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma 180. Indian J Exp Biol. 1992;30(3):169–72.

    CAS  PubMed  Google Scholar 

  163. Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P, Jayaprakasam B, Nair MG. Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod. 2006;69(12):1790–2. https://doi.org/10.1021/np060147p.

    Article  CAS  PubMed  Google Scholar 

  164. Samantha SK, Schrawat A, Kim SH, Hahm ER, Shuai Y, Roy R, et al. Disease subtype—independent biomarkers of breast cancer chemoprevention by the ayurvedic medicine phytochemical withaferin A. J Natl Cancer Inst. 2017;109:6.

    Google Scholar 

  165. Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent Withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer. 2008;60(Suppl. 1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, Kaul SC. Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effects. Clin Cancer Res. 2007;13:2298–306.

    Article  CAS  PubMed  Google Scholar 

  167. Yang Z, Gracia A, Xu S, Powell DR, Vertino PM, Singh S, Marcus AI. Withania somnifera root extract inhibits mammary cancer metastatis and epithelial to mesenchymal transition. PLoS ONE. 2013;8:e75069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mohan R, Bargagna-Mohan P. The use of Withaferin A to study intermediate filaments. Methods Enzymol. 2016;568:187–218.

    Article  CAS  PubMed  Google Scholar 

  169. Widodo N, Priyandoko D, Shah N, Wadhwa R, Kaul SC. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signalling. PLoS ONE. 2010;5:e13536.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS ONE. 2011;6:e23354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stan SD, Hahm ER, Warin R, Singh SV. Withaferin A causes FOXO3a—and Bim—dependent apoptosis and inhibits growth of human breast cancer cell lines in vivo. Cancer Res. 2008;68:7661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hahm ER, Lee J, Huand Y, Singh SV. Withaferin a suppreses estrogen receptor-alpha expression in human breast cancer cells. Mol Carcinog. 2011;50:614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hahm ER, Singh SV. Withaferin-A induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein suppression. Cancer Lett. 2013;334:101–8.

    Article  CAS  PubMed  Google Scholar 

  174. Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A induces ROS—mediated paraptosis in Human Breast cancer cell-lines MCF-7 and MDA-MB- 231. PLoS ONE. 2016;11:e0168488.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Muniraj N, Siddharth S, Nagalingam A, Walker A, Woo J, Gyorffy B, et al. Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis. 2019;40:1110–20.

    CAS  Google Scholar 

  176. Hahm ER, Lee J, Abella T, Singh SV. Withaferin A inhibits expression of ataxia telengiectasia and Rad-3 related kinase and enhances sensitivity of human breast cancer cells to cisplatin. Mol Carcinog. 2019;58:2139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Roy RV, Suman S, Das TP, Luevano JE, Damodaran C. Withaferin—a, a steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells. J Nat Prod. 2012;76:1909–15.

    Article  Google Scholar 

  178. Moselhy J, Suman S, Alghamdi M, Chandrasekharan B, Das TP, Houda A, et al. Withaferin A inhibits prostate carcinogenesis in a PTEN-deficient mouse model of prostate cancer. Neoplasia. 2017;19:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a—dependent apoptosis in prostate cancer. Cell Death Dis. 2016;7:e2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. NOTCH-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010;9:202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xia S, Miao Y, Liu S. Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochem Biophys Res Commun. 2018;503(4):2363–9. https://doi.org/10.1016/j.bbrc.2018.06.162.

    Article  CAS  PubMed  Google Scholar 

  182. Davidson SK, Haygood MG. Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus endobugula sertula.” Biol Bull. 1999;196(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  183. Mutter R, Wills M. Chemistry and clinical biology of the bryostatins. Bioorg Med Chem. 2000;8(8):1841–60.

    Article  CAS  PubMed  Google Scholar 

  184. Wender PA, Hinkle KW, Koehler MF, Lippa B. The rational design of potential chemotherapeutic agents: synthesis of bryostatin analogues. Med Res Rev. 1999;19(5):388–407.

    Article  CAS  PubMed  Google Scholar 

  185. Schwartsmann G, da Rocha AB, Berlinck RG, Jimeno J. Marine organisms as a source of new anticancer agents. Lancet Oncol. 2001;2(4):221–5.

    Article  CAS  PubMed  Google Scholar 

  186. Zonder JA, Philip PA. Pharmacology and clinical experience with bryostatin 1: a novel anticancer drug. Expert Opin Investig Drugs. 1999;8(12):2189–99.

    Article  CAS  PubMed  Google Scholar 

  187. Zeng N, Xu Y, Wu Y, Hongbo T, Wu M. Bryostatin 1 causes attenuation of TPA-mediated tumor promotion in mouse skin. Mol Med Rep. 2018;17(1):1077–82.

    CAS  PubMed  Google Scholar 

  188. Biberacher V, Decker T, Oelsner M, Wagner M, Bogner C, Schmidt B, et al. The cytotoxicity of anti-CD22 immunotoxin is enhanced by bryostatin 1 in B-cell lymphomas through CD22 upregulation and PKC-βIIdepletion. Haematologica. 2012;97(5):771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vrana JA, Saunders AM, Chellappan SP, Grant S. Divergent effects of bryostatin 1 and phorbol myristate acetate on cell cycle arrest and maturation in human myelomonocytic leukemia cells (U937). Differentiation. 1998;63(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  190. Wang J, Wang Z, Sun Y, Liu D. Bryostatin-1 inhibits cell proliferation of hepatocarcinoma and induces cell cycle arrest by activation of GSK3β. Biochem Biophys Res Commun. 2019;512(3):473–8.

    Article  CAS  PubMed  Google Scholar 

  191. Wright JJ, Blatner G, Cheson BD. Clinical trials referral resource. Clinical trials of dolastatin-10. Oncology. 1999;3:68–70.

    Google Scholar 

  192. Pitot HC, McElroy EA, Reid JM, et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res. 1999;5:525–31.

    CAS  PubMed  Google Scholar 

  193. Bai R, Pettit GR, Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol. 1990;39:1941–9.

    Article  CAS  PubMed  Google Scholar 

  194. Verdier-Pinard P, Kepler JA, Pettit GR, Hamel E. Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity. Mol Pharmacol. 2000;57:180–7.

    CAS  PubMed  Google Scholar 

  195. Flahive E, Srirangam J. The dolastatins. In: Cragg DJ, Kingston GM, Newman DGI, editors. Anticancer agents from natural products. 2nd ed. Boca Raton: CRC Press; 2011. p. 263–90.

    Google Scholar 

  196. Yokosaka S, Izawa A, Sakai C, Sakurada E, Morita Y, Nishio Y. Synthesis and evaluation of novel dolastatin 10 derivatives for versatile conjugations. Bioorg Med Chem. 2018;26(8):1643–52.

    Article  CAS  PubMed  Google Scholar 

  197. Shetty N, Gupta S. Eribulin drug review. South Asian J Cancer. 2014;3(1):57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Jordan M, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, et al. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther. 2005;4:1086–95.

    Article  CAS  PubMed  Google Scholar 

  199. Setola E, Noujaim J, Benson C, Chawla S, Palmerini E, Jones RL. Eribulin in advanced liposarcoma and leiomyosarcoma. Expert Rev Anticancer Ther. 2017;17(8):717–23.

    Article  CAS  PubMed  Google Scholar 

  200. Swami U, Shah U, Goel S. Eribulin in non-small cell lung cancer: challenges and potential strategies. Expert Opin Investig Drugs. 2017;26(4):495–508.

    Article  CAS  PubMed  Google Scholar 

  201. Donoghue M, Lemery SJ, Yuan W, He K, Sridhara R, Shord S, et al. Eribulin mesylate for the treatment of patients with refractory metastatic breast cancer: use of a “physician’s choice” control arm in a randomized approval trial. Clin Cancer Res. 2012;18:1496–505.

    Article  CAS  PubMed  Google Scholar 

  202. Urdiales JL, Morata P, Nunez De Castro I. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett. 1996;102:31–7.

    Article  CAS  PubMed  Google Scholar 

  203. Gonzalez-Santiago L, Suarez Y, Zarich N, Muñoz-Alonso MJ, Cuadrado A, Martinez T, et al. Aplidin induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ. 2006;13:1968–81.

    Article  CAS  PubMed  Google Scholar 

  204. Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L, et al. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene. 2002;21:7533–44.

    Article  CAS  PubMed  Google Scholar 

  205. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem. 2003;278:241–50.

    Article  CAS  PubMed  Google Scholar 

  206. Muñoz MJ, Alvarez E, Martinez T, Gonzalez-Santiago L, Sasak H, Lepage D, et al. JNK activation as an in vivo marker of Aplidin® Activity. In Proceedings of the 2007 AACR Annual Meeting, Los Angeles, CA, USA, 14–18 April 2007; Abstract No. 5580.

  207. Biscardi M, Caporale R, Balestri F, Gavazzi S, Jimeno J, Grossi A. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann Oncol. 2005;16:1667–74.

    Article  CAS  PubMed  Google Scholar 

  208. Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 2004;90:2418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia. 2003;17:52–9.

    Article  CAS  PubMed  Google Scholar 

  210. Taraboletti G, Poli M, Dossi R, et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 2004;90(12):2418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Morande PE, Zanetti SR, Borge M, et al. The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Invest New Drugs. 2012;30:1830–40.

    Article  CAS  PubMed  Google Scholar 

  212. Losada A, Martínez-Leal JF, Gago F, et al. Role of the eukaryotic elongation factor eEF1A in the mechanism of action of Aplidin. Abstract 5467. Presented at: American Association for Cancer Research Annual Meeting; 2014; San Diego, CA.

  213. Geoerger B, Estlin EJ, Aerts I, et al. A Phase I and pharmacokinetic study of plitidepsin in children with advanced solid tumours: an Innovative Therapies for Children with Cancer (ITCC) study. Eur J Cancer. 2012;48:289–96.

    Article  CAS  PubMed  Google Scholar 

  214. Ocio EM, Mateos MV, Prósper F, et al. Phase I study of plitidepsin in combination with bortezomib and dexamethasone in patients with relapsed and/or refractory multiple myeloma. J Clin Oncol. 2016;34(suppl):abst. 8006.

    Article  Google Scholar 

  215. Schoffski P, Guillem V, Garcia M, et al. Phase II randomized study of Plitidepsin (Aplidin), alone or in association with L-carnitine, in patients with unresectable advanced renal cell carcinoma. Mar Drugs. 2009;7:57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Alonso-Álvarez S, Pardal E, Sánchez-Nieto D, Navarro M, Caballero MD, Mateos MV, Martín A. Plitidepsin: design, development, and potential place in therapy. Drug Des Dev Ther. 2017;11:253.

    Article  Google Scholar 

  217. Spicka I, Ocio EM, Oakervee HE, Greil R, Banh RH, Huang SY, et al. Randomized phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs dexamethasone alone in patients with relapsed/refractory multiple myeloma. Ann Hematol. 2019;98(9):2139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang L, Wang Q, Tian X, Shi X. Learning from Clostridium novyi-NT: how to defeat cancer. J Cancer Res Ther. 2018;14(Supplement):S1–6. https://doi.org/10.4103/0973-1482.204841.

    Article  CAS  PubMed  Google Scholar 

  219. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2001;98(26):15155–60. https://doi.org/10.1073/pnas.251543698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fox ME, Lemmon MJ, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 1996;3(2):173–8.

    CAS  PubMed  Google Scholar 

  221. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Can Res. 1955;15(7):473–8.

    CAS  Google Scholar 

  222. Moese JR, Moese G. Oncolysis by Clostidia. I. Activity of Clostridium butyricum (M-55) and other non-pathogenic Clostridia against the ehrlich carcinoma. Cancer Res. 1964;24:212–6.

    CAS  PubMed  Google Scholar 

  223. Torrey JC, Kahn MC. The treatment of Flexner-Jobling rat carcinomas with bacterial proteolytic ferments. J Cancer Res. 1927;11:334–76.

    CAS  Google Scholar 

  224. Parker RC, Plummer HC. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med. 1947;66(2):461–7. https://doi.org/10.3181/00379727-66-16124.

    Article  CAS  PubMed  Google Scholar 

  225. Murthy SH, Thorunn H, Janku F. Phase-1 trial of image-guided oncolysis by Clostridium novyi-NT spore inoculation: Early technical insights. J Vasc Interv Radiol. 2015;26:151–6.

    Article  Google Scholar 

  226. Diaz LA Jr, Cheong I, Foss CA, Zhang X, Peters BA, Agrawal N, et al. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci Off J Soc Toxicol. 2005;88(2):562–75. https://doi.org/10.1093/toxsci/kfi316.

    Article  CAS  Google Scholar 

  227. Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, et al. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol. 2016;24(12):1573–80. https://doi.org/10.1038/nbt1256.

    Article  CAS  Google Scholar 

  228. Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, et al. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. 2004;101(42):15172–7. https://doi.org/10.1073/pnas.0406242101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gelman AE, Turka LA. Autoimmunity heats up. Nat Med. 2003;9(12):1465–6. https://doi.org/10.1038/nm1203-1465.

    Article  CAS  PubMed  Google Scholar 

  230. Staedtke V, Roberts NJ, Bai RY, Zhou S. Clostridium novyi-NT in cancer therapy. Genes Dis. 2016;3(2):144–52. https://doi.org/10.1016/j.gendis.2016.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Smith AB, Freeze BS, LaMarche MJ, Sager J, Kinzler KW, Vogelstein B. Discodermolide analogues as the chemical component of combination bacteriolytic therapy. Bioorg Med Chem Lett. 2005;15(15):3623–6. https://doi.org/10.1016/j.bmcl.2005.05.068.

    Article  CAS  PubMed  Google Scholar 

  232. Staedtke V, Bai RY, Sun W, Huang J, Kibler KK, Tyler BM, et al. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget. 2015;6(8):5536–46. https://doi.org/10.18632/oncotarget.3627.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Wei MQ, Ren R, Good D, Anné J. Clostridial spores as live ‘Trojan horse’ vectors for cancer gene therapy: comparison with viral delivery systems. Genet Vaccines Ther. 2008;6:8. https://doi.org/10.1186/1479-0556-6-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Janku F, Fu S, Murthy R, Karp D, Hong D, Tsimberidou A, et al. 383 First-in-man clinical trial of intratumoral injection of clostridium Novyi-NT spores in combination with pembrolizumab in patients with treatment-refractory advanced solid tumors. J ImmunoTher Cancer. 2020. https://doi.org/10.1136/jitc-2020-SITC2020.0383.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Li J, Zhan L, Qin C. The double-sided effects of Mycobacterium Bovis bacillus Calmette-Guérin vaccine. NPJ vaccines. 2021;6(1):14. https://doi.org/10.1038/s41541-020-00278-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Noguera-Ortega E, Guallar-Garrido S, Julián E. Mycobacteria-based vaccines as immunotherapy for non-urological cancers. Cancers. 2020;12(7):1802. https://doi.org/10.3390/cancers12071802.

    Article  CAS  PubMed Central  Google Scholar 

  237. Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette-Guerin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines. 2015;14(9):1255–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Meyer JP, Persad R, Gillatt DA. Use of bacille Calmette-Guérin in superficial bladder cancer. Postgrad Med J. 2002;78(922):449–54. https://doi.org/10.1136/pmj.78.922.449.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Guallar-Garrido S, Julián E. Bacillus Calmette-Guérin (BCG) therapy for bladder cancer: an update. ImmunoTargets Ther. 2020;9:1–11. https://doi.org/10.2147/ITT.S202006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Han J, Gu X, Li Y, Wu Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother Biomed Pharmacother. 2020;129:110393. https://doi.org/10.1016/j.biopha.2020.110393.

    Article  CAS  PubMed  Google Scholar 

  241. Luo Y, Knudson MJ. Mycobacterium bovis bacillus Calmette-Guérin-induced macrophage cytotoxicity against bladder cancer cells. Clin Dev Immunol. 2010. https://doi.org/10.1155/2010/357591.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Bevers RF, Kurth KH, Schamhart DH. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br J Cancer. 2004;91(4):607–12. https://doi.org/10.1038/sj.bjc.6602026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kavoussi LR, Brown EJ, Ritchey JK, Ratliff TL. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. J Clin Investig. 1990;85(1):62–7. https://doi.org/10.1172/JCI114434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Yi H, Rong Y, Yankai Z, Wentao L, Hongxia Z, Jie W, et al. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine. 2006;24(14):2575–84. https://doi.org/10.1016/j.vaccine.2005.12.030.

    Article  CAS  PubMed  Google Scholar 

  245. Wang XJ, Gu K, Xu JS, Li MH, Cao RY, Wu J, et al. Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo. Cancer Immunol Immunother CII. 2010;59(12):1859–66. https://doi.org/10.1007/s00262-010-0911-4.

    Article  CAS  PubMed  Google Scholar 

  246. Huo Y, Li B, Zhang Y, Wang S, Bao M, Gao X, et al. Pre-clinical safety evaluation of heat shock protein 65-MUC1 peptide fusion protein. Regul Toxicol Pharmacol. 2007;49:63–74.

    Article  CAS  PubMed  Google Scholar 

  247. Chung MA, Luo Y, O’Donnell M, Rodriguez C, Heber W, Sharma S, Chang HR. Development and preclinical evaluation of a Bacillus Calmette-Guérin-MUC1-based novel breast cancer vaccine. Cancer Res. 2003;63:1280–7.

    CAS  PubMed  Google Scholar 

  248. Zong J, Peng Q, Wang Q, Zhang T, Fan D, Xu X. Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncol Rep. 2009;22:953–61.

    CAS  PubMed  Google Scholar 

  249. Popiela T, Kulig J, Czupryna A, Szczepanik AM, Zembala M. Efficiency of adjuvant immunochemotherapy following curative resection in patients with locally advanced gastric cancer. Gastric Cancer. 2004;7:240–5.

    Article  CAS  PubMed  Google Scholar 

  250. Zhang Y, Xu J, Zhao R, Liu J, Wu J. Inhibition effects on liver tumors of BALB/c mice bearing H22 cells by immunization with a recombinant immunogen of GnRH linked to heat shock protein 65. Vaccine. 2007;25:6911–21.

    Article  CAS  PubMed  Google Scholar 

  251. Nakajima H, Kawasaki K, Oka Y, Tsuboi A, Kawakami M, Ikegame K, et al. WT1 peptide vaccination combined with BCG-CWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother CII. 2004;53(7):617–24. https://doi.org/10.1007/s00262-003-0498-0.

    Article  CAS  PubMed  Google Scholar 

  252. Masuda H, Nakamura T, Noma Y, Harashima H. Application of BCG-CWS as a systemic adjuvant by using nanoparticulation technology. Mol Pharm. 2018;15:5762–71.

    Article  CAS  PubMed  Google Scholar 

  253. Benitez M, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol. 2019;103(19):7903–16. https://doi.org/10.1007/s00253-019-10057-0.

    Article  CAS  PubMed  Google Scholar 

  254. Biteau K, Guiho R, Chatelais M, Taurelle J, Chesneau J, Corradini N, et al. L-MTP-PE and zoledronic acid combination in osteosarcoma: preclinical evidence of positive therapeutic combination for clinical transfer. Am J Cancer Res. 2016;6(3):677–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Lou Y, Groves MJ, Klegerman ME. In-vivo and in-vitro targeting of a murine sarcoma by gelatin microparticles loaded with a glycan (PS1). J Pharm Pharmacol. 1994;46(11):863–6. https://doi.org/10.1111/j.2042-7158.1994.tb05703.x.

    Article  CAS  PubMed  Google Scholar 

  256. McCarthy EF. The toxins of William B Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthopaedic J. 2016;26:154–8.

    Google Scholar 

  257. DeWeerdt S. Bacteriology: a caring culture. Nature. 2013;504(7480):S4–5. https://doi.org/10.1038/504S4a.

    Article  CAS  PubMed  Google Scholar 

  258. Oliveira J, Brandão SF. Streptococcus pyogenes in tumor treatment: the past, present and future. 2020.

  259. Rebuffini E, Zuccarino L, Grecchi E, Carinci F, Merulla VE. Picibanil (OK-432) in the treatment of head and neck lymphangiomas in children. Dental Res J. 2012;9(Suppl 2):S192–6.

    Google Scholar 

  260. Olivieri C, Nanni L, De Gaetano AM, Manganaro L, Pintus C. Complete resolution of retroperitoneal lymphangioma with a single trial of OK-432 in an infant. Pediatr Neonatol. 2016;57(3):240–3.

    Article  PubMed  Google Scholar 

  261. Ryoma Y, Moriya Y, Okamoto M, Kanaya I, Saito M, Sato M. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy. Anticancer Res. 2004;24(5C):3295–301.

    CAS  PubMed  Google Scholar 

  262. Koya T, Yanagisawa R, Higuchi Y, Sano K, Shimodaira S. Interferon-α- inducible dendritic cells matured with OK-432 exhibit TRAIL and Fas Ligand pathway-mediated killer activity. Sci Rep. 2017. https://doi.org/10.1038/srep42145.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Ohta N, Fukase S, Watanabe T, Ito T, Aoyagi M. Effects and mechanism of OK-432 therapy in various neck cystic lesions. Acta Otolaryngol. 2010;130(11):1287–92.

    Article  CAS  PubMed  Google Scholar 

  264. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100(4):826–33. https://doi.org/10.1002/cncr.20057.

    Article  CAS  PubMed  Google Scholar 

  265. Synakiewicz A, Stachowicz-Stencel T, Adamkiewicz-Drozynska E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin Investig Drugs. 2014;26:1–13.

    Google Scholar 

  266. Fiedler T, Strauss M, Hering S, Redanz U, William D, Rosche Y, et al. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biol Ther. 2015;16(7):1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yang WS, Park SO, Yoon AR, Yoo JY, Kim MK, Yun CO, Kim CW. Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol Cancer. 2006;5:1610–9.

    Article  CAS  Google Scholar 

  268. Gruber C, Gratz IK, Murauer EM, Mayr E, Koller U, Bruckner-Tuderman L, et al. Spliceosome-mediated RNA trans-splicing facilitates targeted delivery of suicide genes to cancer cells. Mol Cancer Ther. 2011;10(2):233–41. https://doi.org/10.1158/1535-7163.MCT-10-0669.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge, Mr. Sami Ranjan Sahoo, SLIMS, Puducherry, India, for his immense help in designing the figures.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Equal Contribution by all the authors.

Corresponding authors

Correspondence to Nethaji Muniraj or Ananda Vayaravel Cassinadane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not Applicable.

Consent for publication

I give my consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, P., Ravitchandirane, R., Khanam, S. et al. Novel molecules as the emerging trends in cancer treatment: an update. Med Oncol 39, 20 (2022). https://doi.org/10.1007/s12032-021-01615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01615-6

Keywords