Skip to main content

Advertisement

Log in

Application of comprehensive bioinformatics approaches to reconnoiter crucial genes and pathways underpinning hepatocellular carcinoma: a drug repurposing endeavor

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common neoplasm in the world. Chronic inflammation of liver and associated wound healing processes collectively contribute to the development of cirrhosis which further progresses to dysplastic nodule and then to HCC. Etiological mediators and ongoing manipulations at cellular level in HCC are well established; however, key protein interactions and genetic alterations involved in stepwise hepatocarcinogenic pathways are seldom explored. This study aims to unravel novel targets of HCC and repurpose the FDA-approved drugs against the same. Genetic data pertinent to different stages of HCC were retrieved from GSE6764 dataset and analyzed via GEO2R. Subsequently, protein–protein interaction network analysis of differentially expressed genes was performed to identify the hub genes with significant interaction. Hub genes displaying higher interactions were considered as potential HCC targets and were validated thorough UALCAN and GEPIA databases. These targets were screened against FDA-approved drugs through molecular docking and dynamics simulation studies to capture the drugs with potential activity against HCC. Finally, cytotoxicity of the shortlisted drug was confirmed in vitro by MTT assay. CDC20 was identified as potential druggable target. Docking, binding energy calculations, and dynamic studies revealed significant interaction exhibited by Labetalol with CDC20. Further, in MTT assay, Labetalol demonstrated an IC50 of 200.29 µg/ml in inhibiting the cell growth of HepG2 cell line. In conclusion, this study discloses a series of key genetic underpinnings of HCC and recommends the pertinence of labetalol as a potential repurposable drug against HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

rGyr:

Radius of Gyration

ASPM:

Assembly Factor for Spindle Microtubules

BCLC:

Barcelona Clinic Liver Cancer

BUB1:

BUB1 Mitotic Checkpoint Serine/Threonine Kinase

BUB1B:

BUB1 Mitotic Checkpoint Serine/Threonine Kinase B

CCL19:

Chemokine (C–C Motif) Ligand 19

CCNB1:

Cyclin B1

CCNB1:

Cyclin B1

CCNB2:

Cyclin B2

CDC20:

Cell Division Cycle 20

CDK1:

Cyclin-Dependent Kinase 1

CDKN3:

Cyclin-Dependent Kinase Inhibitor 3

CENPF:

Centromere Protein F

CFTR:

Cystic Fibrosis Transmembrane Conductance Regulator

CXCL11:

C-X-C Motif Chemokine 11

DEG:

Differentially Expressed Genes

DN:

Dysplastic Nodule

FDA:

Food and Drug Administration

GEPIA:

Gene Expression Profiling Interactive Analysis

GO:

Gene Ontology

HBV:

Hepatitis-B Virus

HCC:

Hepatocellular Carcinoma

HCV:

Hepatitis-C Virus

HMMR:

Hyaluronan-Mediated Motility Receptor

IGF1:

Insulin-Like Growth Factor 1

IL7R:

Interleukin 7 Receptor

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KIF20A:

Kinesin Family Member 20A

KIF2C:

Kinesin Family Member 2C

KIF4A:

Kinesin Family Member 4A

KRT19:

Keratin 19

MAD2L1:

Mitotic Arrest Deficient 2 Like 1

MELK:

Maternal Embryonic Leucine Zipper Kinase

MM/GBSA:

Molecular Mechanics energies combined with the Generalized Born and Surface Area continuum Solvation

MX1:

MX Dynamin Like GTPase 1

NCAPG:

Non-SMC Condensin I Complex Subunit G

NEK2:

NIMA-Related Kinase 2

PBK:

PDZ Binding Kinase

PDB:

Protein Data Bank

PROM1:

Prominin 1

RMSD:

Root Mean Square Deviation

RMSF:

Root-Mean-Square Fluctuation

STAT1:

Signal Transducer and Activator of Transcription 1

TCGA:

The Cancer Genome Atlas

TOP2A:

DNA Topoisomerase II Alpha

TPX2:

TPX2 Microtubule Nucleation Factor

References

  1. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology (Baltimore, MD). 2021;73(Suppl 1):4–13.

    Article  CAS  Google Scholar 

  2. Acharya SK. Epidemiology of hepatocellular carcinoma in India. J Clin Exp Hepatol. 2014;4:S27-33.

    Article  Google Scholar 

  3. von Felden J. New systemic agents for hepatocellular carcinoma: an update 2020. Curr Opin Gastroenterol. 2020;36:177–83.

    Article  Google Scholar 

  4. Kondo M, Numata K, Hara K, Nozaki A, Fukuda H, Chuma M, et al. Treatment of advanced hepatocellular carcinoma after failure of sorafenib treatment: subsequent or additional treatment interventions contribute to prolonged survival postprogression. Gastroenterol Res Pract. 2017;2017:5728946.

    Article  Google Scholar 

  5. He B, Yin J, Gong S, Gu J, Xiao J, Shi W, et al. Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis. Medicine. 2017;96:e6938.

    Article  CAS  Google Scholar 

  6. Gns HS, Gr S, Murahari M, Krishnamurthy M. An update on drug repurposing: re-written saga of the drug’s fate. Biomed Pharmacother Biomed Pharmacother. 2019;110:700–16.

    Article  Google Scholar 

  7. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology (Baltimore, MD). 2007;45:938–47.

    Article  CAS  Google Scholar 

  8. Meissl K, Macho-Maschler S, Müller M, Strobl B. The good and the bad faces of STAT1 in solid tumours. Cytokine. 2017;89:12–20.

    Article  CAS  Google Scholar 

  9. Gao B, Wang H, Lafdil F, Feng D. STAT proteins—key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol. 2012;57:430–41.

    Article  CAS  Google Scholar 

  10. Sung PS, Shin E-C, Yoon SK. Interferon response in Hepatitis C Virus (HCV) infection: lessons from cell culture systems of HCV infection. Int J Mol Sci. 2015;16:23683–94.

    Article  CAS  Google Scholar 

  11. Nazari A, Ahmadi Z, Hassanshahi G, Abbasifard M, Taghipour Z, Falahati-Pour SK, et al. Effective treatments for Bladder cancer affecting CXCL9/CXCL10/CXCL11/CXCR3 Axis: a review. Oman Med Spec Board. 2020;35:e103.

    Article  CAS  Google Scholar 

  12. Chalin A, Lefevre B, Devisme C, Barget N, Amiot L, Samson M. Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine. 2019;117:72–8.

    Article  CAS  Google Scholar 

  13. Hillinger S, Yang SC, Batra RK, Strieter RM, Weder W, Dubinett SM, et al. CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer. 2006;94:1029–34.

    Article  CAS  Google Scholar 

  14. Al-Mossawi H, Yager N, Taylor CA, Lau E, Danielli S, de Wit J, et al. Context-specific regulation of surface and soluble IL7R expression by an autoimmune risk allele. Nat Commun. 2019;10:4575.

    Article  Google Scholar 

  15. Willis CR, Seamons A, Maxwell J, Treuting PM, Nelson L, Chen G, et al. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis. J Inflamm. 2012;9:39.

    Article  CAS  Google Scholar 

  16. Liu C, Song C, Li J, Sun Q. CFTR functions as a tumor suppressor and is regulated by DNA methylation in colorectal cancer. Cancer Manag Res. 2020;12:4261–70.

    Article  CAS  Google Scholar 

  17. Saha SK, Islam SMR, Kwak KS, Rahman MS, Cho SG. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther. 2020;27:147–67.

    Article  CAS  Google Scholar 

  18. Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:3081–91.

    Article  CAS  Google Scholar 

  19. Lu D, Bai X, Zou Q, Gan Z, Lv Y. Identification of the association between HMMR expression and progression of hepatocellular carcinoma via construction of a co-expression network. Oncol Lett. 2020;20:2645–54.

    Article  CAS  Google Scholar 

  20. Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ, et al. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol. 2018;234:619–31.

    Article  Google Scholar 

  21. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am. 2012;41:335.

    Article  CAS  Google Scholar 

  22. Kubiak JZ, El Dika M. Canonical and alternative pathways in cyclin-dependent kinase 1/cyclin B inactivation upon M-phase exit in Xenopus laevis cell-free extracts. Enzym Res. 2011;2011:523420.

    Article  Google Scholar 

  23. Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers. 2015;7:179–237.

    Article  CAS  Google Scholar 

  24. Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 2008;27:1562–71.

    Article  CAS  Google Scholar 

  25. Gao Y, Zhang B, Wang Y, Shang G. Cdc20 inhibitor apcin inhibits the growth and invasion of osteosarcoma cells. Oncol Rep. 2018;40:841–8.

    CAS  PubMed  Google Scholar 

  26. Percy MJ, Myrie KA, Neeley CK, Azim JN, Ethier SP, Petty EM. Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosom Cancer. 2000;29:356–62.

    Article  CAS  Google Scholar 

  27. Kokuryo T, Yokoyama Y, Yamaguchi J, Tsunoda N, Ebata T, Nagino M. NEK2 is an effective target for cancer therapy with potential to induce regression of multiple human malignancies. Anticancer Res. 2019;39:2251–8.

    Article  CAS  Google Scholar 

  28. Ma W, Wang B, Zhang Y, Wang Z, Niu D, Chen S, et al. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis. Cancer Cell Int. 2019;19:239.

    Article  Google Scholar 

  29. Li T-F, Zeng H-J, Shan Z, Ye R-Y, Cheang T-Y, Zhang Y-J, et al. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell Int. 2020;20:123.

    Article  Google Scholar 

  30. Huang H, Lee M-H, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: an effective drug target with diverse therapeutic potential. Cancers. 2021;13:2232.

    Article  Google Scholar 

  31. Liu W, Liang B, Liu H, Huang Y, Yin X, Zhou F, et al. Overexpression of non-SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. Int J Mol Med. 2017;40:731–8.

    Article  CAS  Google Scholar 

  32. Janostiak R, Rauniyar N, Lam TT, Ou J, Zhu LJ, Green MR, et al. MELK promotes melanoma growth by stimulating the NF-κB pathway. Cell Rep. 2017;21:2829–41.

    Article  CAS  Google Scholar 

  33. Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets. 2014;14:517–36.

    Article  CAS  Google Scholar 

  34. Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, André N, et al. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget. 2017;8:2874–89.

    Article  Google Scholar 

  35. Ford SJ, Obeidy P, Lovejoy DB, Bedford M, Nichols L, Chadwick C, et al. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br J Pharmacol. 2013;168:1316–28.

    Article  CAS  Google Scholar 

  36. Pullarkat V, Meng Z, Donohue C, Yamamoto VN, Tomassetti S, Bhatia R, et al. Iron chelators induce autophagic cell death in multiple myeloma cells. Leuk Res. 2014;38:988–96.

    Article  CAS  Google Scholar 

  37. Pascale F, Bedouet L, Baylatry M, Namur J, Laurent A. Comparative chemosensitivity of VX2 and HCC cell lines to drugs used in TACE. Anticancer Res. 2015;35:6497–503.

    CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Nair.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(JPG 272 kb)

(DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, G., Hema Sree, G.N.S., Saraswathy, G.R. et al. Application of comprehensive bioinformatics approaches to reconnoiter crucial genes and pathways underpinning hepatocellular carcinoma: a drug repurposing endeavor. Med Oncol 38, 145 (2021). https://doi.org/10.1007/s12032-021-01576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01576-w

Keywords

Navigation