Faderl S, Talpaz M, Estrov Z, O’brıen S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.
CAS
Article
Google Scholar
Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22.
CAS
Article
Google Scholar
Linev AJ, Ivanov HJ, Zhelyazkov IG, Ivanova H, Goranova-Marinova VS, Stoyanova VK. Mutations associated with imatinib mesylate resistance—review. Folia Med (Plovdiv). 2018;60(4):617–23.
Article
Google Scholar
Izzo B, Gottardi EM, Errichiello S, Daraio F, Baratè C, Galimberti S. Monitoring chronic myeloid leukemia: how molecular tools may drive therapeutic approaches. Front Oncol. 2019;9:1–12.
Article
Google Scholar
Hantschel O. Chronic myeloid leukemia. HemaSphere. 2019;3(S2):47.
Article
Google Scholar
Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett. 2007;249(2):121–32.
CAS
Article
Google Scholar
Yaghmaie M, Yeung CC. Molecular mechanisms of resistance to tyrosine kinase inhibitors. Curr Hematol Malig Rep. 2019;14(5):395–404.
Article
Google Scholar
Bavaro L, Martelli M, Cavo M, Soverini S. Mechanisms of disease progression and resistance to tyrosine kinase inhibitor therapy in chronic myeloid leukemia: an update. Int J Mol Sci. 2019;20(24):1–23.
Article
Google Scholar
Etienne G, Dulucq S, Huguet F, Schmitt A, Lascaux A, Hayette S, et al. Incidence and outcome of BCR-ABL mutated chronic myeloid leukemia patients who failed to tyrosine kinase inhibitors. Cancer Med. 2019;8(11):5173–82.
CAS
Article
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23.
Article
Google Scholar
Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, et al. The philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35(1):1–15.
Article
Google Scholar
Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83.
CAS
Article
Google Scholar
Wei Y, Hardling M, Olsson B, Hezaveh R, Ricksten A, Stockelberg D, et al. Not all imatinib resistance in CML are BCR-ABL kinase domain mutations. Ann Hematol. 2006;85(12):841–7.
CAS
Article
Google Scholar
Chien SH, Liu HM, Chen PM, Ko PS, Lin JS, Chen YJ, et al. The landscape of BCR-ABL mutations in patients with Philadelphia chromosome-positive leukaemias in the era of second-generation tyrosine kinase inhibitors. Hematol Oncol. 2020;38(3):390–8.
CAS
Article
Google Scholar
Baccarani M, Rosti G, Soverini S. Chronic myeloid leukemia: the concepts of resistance and persistence and the relationship with the BCR-ABL1 transcript type. Leukemia. 2019;33(10):2358–64. https://doi.org/10.1038/s41375-019-0562-1.
CAS
Article
PubMed
Google Scholar
Mahon FX, Etienne G. Deep molecular response in chronic myeloid leukemia: the new goal of therapy? Clin Cancer Res. 2014;20(2):310–22.
CAS
Article
Google Scholar
Alikian M, Gale RP, Apperley JF, Foroni L, Alikian M. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia. Biomol Detect Quantif. 2017;11:4–20. https://doi.org/10.1016/j.bdq.2017.01.001.
CAS
Article
PubMed
PubMed Central
Google Scholar
El Fakih R, Chaudhri N, Alfraih F, Rausch CR, Naqvi K, Jabbour E. Complexity of chronic-phase CML management after failing a second-generation TKI. Leuk Lymphoma. 2019;61(4):776–87.
Article
Google Scholar
Machova Polakova K, Kulvait V, Benesova A, Linhartova J, Klamova H, Jaruskova M, et al. Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase. J Cancer Res Clin Oncol. 2015;141(5):887–99.
CAS
Article
Google Scholar
de Lavallade H, Jackson S, Kizilors A, Etienne G, Huguet F, Guerci-Bresler A, et al. Prospective evaluation of ABL kinase domain mutational analysis by next-generation-sequencing in newly diagnosed CP CML patients undergoing first-line treatment with nilotinib alone or nilotinib + pegylated interferon-α2a in a prospective phase III trial. Blood. 2019;134(Supplement_1):664–664.
Article
Google Scholar
Soverini S, Abruzzese E, Bocchia M, Bonifacio M, Galimberti S, Gozzini A, et al. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol. 2019;12(1):1–11.
Article
Google Scholar
Soverini S, Bavaro L, de Benedittis C, Martelli M, Iurlo A, Orofino N, et al. Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study. Blood. 2020;135(8):534–41.
Article
Google Scholar
Soverini S, Martelli M, Bavaro L, De Benedittis C, Papayannidis C, Sartor C, et al. Next-generation sequencing improves BCR-ABL1 mutation detection in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol. 2021;193(2):271–9.
CAS
Article
Google Scholar
Koçkan B, Toptaş T, Atagündüz I, Tuğlular AT, Özer A, Akkiprik M. Molecular screening and the clinical impacts of BCR-ABL KD mutations in patients with imatinib-resistant chronic myeloid leukemia. Oncol Lett. 2018;15(2):2419–24.
PubMed
Google Scholar
Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37(4):530–42.
CAS
Article
Google Scholar
Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–29.
CAS
Article
Google Scholar
Azad NA, Shah ZA, Pandith AA, Rasool R, Rasool JA, Baba SM, et al. Analysis of ABL kinase domain mutations as a probable cause of imatinib resistance in chronic myeloid leukemia patients of Kashmir. Meta Gene. 2018;17:93–8. https://doi.org/10.1016/j.mgene.2018.05.003.
Article
Google Scholar
Fojo T. Multiple paths to a drug resistance phenotype: Mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updates. 2007;10(1–2):59–67.
CAS
Article
Google Scholar
Perrotti D, Silvestri G, Stramucci L, Yu J, Trotta R. Cellular and molecular networks in chronic myeloid leukemia: the leukemic stem, progenitor and stromal cell interplay. Curr Drug Targets. 2016;18(4):377–88.
Article
Google Scholar
Bixby D, Talpaz M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematol Am Soc Hematol Educ Program. 2009;2009:461–76.
Article
Google Scholar
Gorre M, Sashidhar R, Annamaneni S, Digumarti R, et al. Demographic and clinical characteristics of chronic myeloid leukemia patients: a study on confined populations of southern India. Indian J Med Paediatr Oncol. 2019;40(1):70–6.
Google Scholar