Skip to main content

Advertisement

Log in

Knockdown of lncRNA HIF1A-AS2 increases drug sensitivity of SCLC cells in association with autophagy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effect of lncRNA HIF1A-AS2 on autophagy-associated drug resistance in small cell lung cancer (SCLC) cells. The expression of HIF1A-AS2 was silenced by siRNA in doxorubicin-sensitive H69 and doxorubicin-resistant H69AR cells. Then, cytotoxicity, apoptosis and autophagy analyses were carried out in the normoxic and CoCl2-induced hypoxic environment. The effect of HIF1A-AS2 on the expression levels of genes, which are associated with drug resistance and autophagy, was determinated by qRT-PCR analysis. The levels of MRP1, HIF-1α and Beclin-1 were analyzed by western blot method. Knockdown of HIF1A-AS2 increased doxorubicin sensitivity of SCLC cells and decreased autophagy. Knockdown of HIF1A-AS2 has also affected the expression of several genes that will increase drug sensitivity and inhibit autophagy in both cell lines. The levels of HIF-1α and Beclin-1 were decreased in both cell lines by knockdown of HIF1A-AS2. MRP1 expression was decrease in H69AR cells. In addition, CoCl2-induced hypoxic environment decreased in doxorubicin sensitivity of H69 cells, and knockdown of HIF1A-AS2 reversed this effect of hypoxia. Knockdown of HIF1A-AS2 increased drug sensitivity of SCLC cells in relation to autophagy. Therefore, hypoxia-HIF1A-AS2-autophagy interaction is thought to be determinative in drug sensitivity of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Chen YT, Feng B, Chen LB. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian Pac J Cancer Prev. 2012;13(8):3577–81.

    Article  PubMed  Google Scholar 

  2. Koinis F, Kotsakis A, Georgoulias V. Small cell lung cancer (SCLC): no treatment advances in recent years. Transl Lung Cancer Res. 2016;5(1):39–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dooley AL, Winslow MM, Chiang DY, Banerji S, Stransky N, Dayton TL, Snyder EL, Senna S, Whittaker CA, Bronson RT, Crowley D, Barretina J, Garraway L, Meyerson M, Jacks T. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 2011;25(14):1470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Gazdar AF. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19(5):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017;17(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. Chin J Cancer. 2017;36(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan Q, Wang M, Yu M, Zhang J, Bristow RG, Hill RP, Tannock IF. Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia. 2016;18(6):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. J Cancer. 2013;108(12):2419–25.

    Article  CAS  Google Scholar 

  10. Liu K, Gao L, Ma X, Huang JJ, Chen J, Zeng L, Ashby CR Jr, Zou C, Chen ZS. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer. 2020;19(1):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thrash-Bingham CA, Tartof KD. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst. 1999;91(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  12. Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem. 2004;279(15):14871–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chen D, Wu L, Liu L, Gong Q, Zheng J, Peng C, Deng J. Comparison of HIF1A-AS1 and HIF1A-AS2 in regulating HIF-1α and the osteogenic differentiation of PDLCs under hypoxia. Int J Mol Med. 2017;40(5):1529–36.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y, Wen A. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 2017;96:165–72.

    Article  CAS  PubMed  Google Scholar 

  15. Ma CP, Liu H, Yi-Feng Chang I, Wang WC, Chen YT, Wu SM, Chen HW, Kuo YP, Shih CT, Li CY, Tan BC. ADAR1 promotes robust hypoxia signaling via distinct regulation of multiple HIF-1α-inhibiting factors. EMBO Rep. 2019. https://doi.org/10.1552/embr.201847107.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen WM, Huang MD, Kong R, Xu TP, Zhang EB, Xia R, Sun M, De W, Shu YQ. Antisense long noncoding RNA HIF1A-AS2 is upregulated in gastric cancer and associated with poor prognosis. Dig Dis Sci. 2015;60(6):1655–62.

    Article  CAS  PubMed  Google Scholar 

  17. Chen M, Zhuang C, Liu Y, Li J, Dai F, Xia M, Zhan Y, Lin J, Chen Z, He A, Xu W, Zhao G, Guo Y, Cai Z, Huang W. Tetracycline-inducible shRNA targeting antisense long non-coding RNA HIF1A-AS2 represses the malignant phenotypes of bladder cancer. Cancer Lett. 2016;376(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  18. Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J, Bronisz A. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 2016;15(11):2500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin J, Shi Z, Yu Z, He Z. LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother. 2018;98:433–9.

    Article  CAS  PubMed  Google Scholar 

  20. Guo X, Lee S, Cao P. The inhibitive effect of sh-HIF1A-AS2 on the proliferation, invasion, and pathological damage of breast cancer via targeting miR-548c-3p through regulating HIF-1α/VEGF pathway in vitro and vivo. Onco Targets Ther. 2019;12:825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin H, Zhao Z, Hao Y, He J, He J. Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol. 2020;98(2):284–92.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res. 2016;76(8):2105–14.

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Liu M, Meng F, Sun B, Jin X, Jia C. The long noncoding RNA HIF1A-AS2 facilitates cisplatin resistance in bladder cancer. J Cell Biochem. 2019;120(1):243–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kuang P, Chen P, Wang L, Li W, Chen B, Liu Y, Xu Y, Wang H, Zhao S, Ye L, Yu F, Ji H, He Y. RNA sequencing analysis of small cell lung cancer reveals candidate chemotherapy insensitivity long noncoding RNAs and microRNAs. Ann Transl Med. 2020;8(4):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wohlkoenig C, Leithner K, Olschewski A, Olschewski H, Hrzenjak A. TR3 is involved in hypoxia-induced apoptosis resistance in lung cancer cells downstream of HIF-1α. Lung Cancer. 2017;111:15–22.

    Article  PubMed  Google Scholar 

  26. Zhou M, Xie Y, Xu S, Xin J, Wang J, Han T, Ting R, Zhang J. An F (2020) Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem. 2020;195:112274.

    Article  CAS  PubMed  Google Scholar 

  27. Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life. 2007;59(12):752–7.

    Article  CAS  PubMed  Google Scholar 

  28. Dury L, Nasr R, Lorendeau D, Comsa E, Wong I, Zhu X, Chan KF, Chan TH, Chow L, Falson P, Di Pietro A, Baubichon-Cortay H. Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol. 2017;124:10–8.

    Article  CAS  PubMed  Google Scholar 

  29. Pérès B, Nasr R, Zarioh M, Lecerf-Schmidt F, Di Pietro A, Baubichon-Cortay H, Boumendjel A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur J Med Chem. 2017;130:346–53.

    Article  PubMed  CAS  Google Scholar 

  30. Chewchuk S, Boorman T, Edwardson D, Parissenti AM. Bile acids increase doxorubicin sensitivity in ABCC1-expressing tumour cells. Sci Rep. 2018;8(1):5413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kogita A, Togashi Y, Hayashi H, Sogabe S, Terashima M, De Velasco MA, Sakai K, Fujita Y, Tomida S, Takeyama Y, Okuno K, Nakagawa K, Nishio K. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int J Oncol. 2014;45(4):1430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, Wei Q, Li Q, Zhang B, Xiao Q. Down-regulating HIF-1α by lentivirus-mediated shRNA for therapy of triple negative breast cancer. Cancer Biol Ther. 2015;16(6):866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hillion J, Wood LJ, Mukherjee M, Bhattacharya R, Di Cello F, Kowalski J, Elbahloul O, Segal J, Poirier J, Rudin CM, Dhara S, Belton A, Joseph B, Zucker S, Resar LM. Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer. Mol Cancer Res. 2009;7(11):1803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiappetta G, Ottaiano A, Vuttariello E, Monaco M, Galdiero F, Gallipoli A, Pilotti S, Jodice G, Siranoush M, Colombo M, Ripamonti CB, Pallante PL, Radice P, Fusco A. HMGA1 protein expression in familial breast carcinoma patients. Eur J Cancer. 2010;46(2):332–9.

    Article  CAS  PubMed  Google Scholar 

  35. Williams MD, Zhang X, Belton AS, Xian L, Huso T, Park JJ, Siems WF, Gang DR, Resar LM, Reeves R, Hill HH Jr. HMGA1 drives metabolic reprogramming of intestinal epithelium during hyperproliferation, polyposis, and colorectal carcinogenesis. J Proteome Res. 2015;14(3):1420–31.

    Article  CAS  PubMed  Google Scholar 

  36. Colamaio M, Tosti N, Puca F, Mari A, Gattordo R, Kuzay Y, Federico A, Pepe A, Sarnataro D, Ragozzino E, Raia M, Hirata H, Gemei M, Mimori K, Del Vecchio L, Battista S, Fusco A. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells. Expert Opin Ther Targets. 2016;20(10):1169–79.

    Article  CAS  PubMed  Google Scholar 

  37. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Towers CG, Thorburn A. Therapeutic targeting of autophagy. EBioMedicine. 2016;14:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li X, Zhou Y, Li Y, Yang L, Ma Y, Peng X, Yang S, Liu J, Li H. Autophagy: a novel mechanism of chemoresistance in cancers. Biomed Pharmacother. 2019;119:109415.

    Article  CAS  PubMed  Google Scholar 

  40. Hong SK, Kim JH, Starenki D, Park JI. Autophagy sensitivity of neuroendocrine lung tumor cells. Int J Oncol. 2013;43(6):2031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rupniewska E, Roy R, Mauri FA, Liu X, Kaliszczak M, Bellezza G, Cagini L, Barbareschi M, Ferrero S, Tommasi AM, Aboagye E, Seckl MJ, Pardo OE. Targeting autophagy sensitises lung cancer cells to Src family kinase inhibitors. Oncotarget. 2018;9(44):27346–62.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kaminskyy VO, Piskunova T, Zborovskaya IB, Tchevkina EM, Zhivotovsky B. Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy. 2012;8:7.

    Article  CAS  Google Scholar 

  43. Liu L, Zhao WM, Yang XH, Sun ZQ, Jin HZ, Lei C, Jin B, Wang HJ. Effect of inhibiting Beclin-1 expression on autophagy, proliferation and apoptosis in colorectal cancer. Oncol Lett. 2017;14(4):4319–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen W, Li Z, Liu H, Jiang S, Wang G, Sun L, Li J, Wang X, Yu S, Huang J, Dong Y. MicroRNA-30a targets BECLIN-1 to inactivate autophagy and sensitizes gastrointestinal stromal tumor cells to imatinib. Cell Death Dis. 2020;11(3):198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang X, Bai F, Xu Y, Chen Y, Chen L. Intensified beclin-1 mediated by low expression of Mir-30a-5p promotes chemoresistance in human small cell lung cancer. Cell Physiol Biochem. 2017;43(3):1126–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was produced from the PhD thesis of Ebru Güçlü and supported by Necmettin Erbakan University, Scientific Research Projects (#181418001).

Author information

Authors and Affiliations

Authors

Contributions

EG: conceptualization, investigation, methodology, formal analysis, writing—original draft, writing—review & editing, visualization. CEG: investigation, formal analysis, visualization. EK: resources, writing—review & editing. HV: resources, writing—review & editing, supervision.

Corresponding author

Correspondence to Ebru Güçlü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güçlü, E., Eroğlu Güneş, C., Kurar, E. et al. Knockdown of lncRNA HIF1A-AS2 increases drug sensitivity of SCLC cells in association with autophagy. Med Oncol 38, 113 (2021). https://doi.org/10.1007/s12032-021-01562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01562-2

Keywords

Navigation