Skip to main content

Advertisement

Log in

PSMA: a game changer in the diagnosis and treatment of advanced prostate cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although management of advanced prostate cancer is evolving, a lot of work remains to be done for patients who have exhausted all options. Molecular targeting of prostate specific membrane antigen (PSMA) is valuable not only for diagnostic but also for therapeutic reasons. PSMA is thus considered to be useful in a theranostic approach. PSMA scans are upcoming diagnostic modalities which detect metastatic lesions that are missed by conventional imaging modalities. PSMA ligand therapy is also an upcoming treatment modality that has been proven to be beneficial with minimal toxicity in patients with advanced prostate cancer that have progressed on prior therapy. In this review article, we summarize the current knowledge regarding PSMA diagnostics and PSMA ligand therapies and discuss their implication in the treatment of advanced prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Parker C, Gillessen S, Heidenreich A, Horwich A, Committee EG. Cancer of the prostate:ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(5):v69–77.

    Article  PubMed  Google Scholar 

  3. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    CAS  PubMed  Google Scholar 

  4. Kawakami M, Nakayama J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Res. 1997;57:2321–4.

    CAS  PubMed  Google Scholar 

  5. Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  6. Diane A et al. Prostate cancer theranostics-an overview. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00884.

    Article  Google Scholar 

  7. Wright GL Jr, et al. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol Semin Origin Investig. 1995;1(1):18–28.

    Article  Google Scholar 

  8. Bostwick DG, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–61.

    Article  CAS  PubMed  Google Scholar 

  9. Kusumi T, et al. Immunohistochemical detection of carcinoma in radical prostatectomy specimens following hormone therapy. Pathol Int. 2008;58(11):687–94.

    Article  CAS  PubMed  Google Scholar 

  10. Mannweiler S, et al. Heterogeneity of prostate-specific membrane antigen (psma) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  11. Bouchelouche K, Choyke PL, Capala J. Prostate specific membrane antigen—A target for imaging and therapy with radionuclides. Discov Med. 2010;9:55–61.

    PubMed  PubMed Central  Google Scholar 

  12. Backhaus P, Noto B, Avramovic N, et al. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. Eur J Nucl Med Mol Imaging. 2018;45:860–77.

    Article  CAS  PubMed  Google Scholar 

  13. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castrationresistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58:1624–31.

    Article  CAS  PubMed  Google Scholar 

  14. Pinto JT, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res. 1996;2(9):1445–51.

    CAS  PubMed  Google Scholar 

  15. Carter RE, Feldman AR, Coyle JT. Prostate-specific membrane antigen Is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA. 1996;93(2):749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halsted CH, et al. Folylpoly-γ-glutamate carboxypeptidase from Pig jejunum. molecular characterization and relation to glutamate carboxypeptidase Ii. J Biol Chem. 1998;273(32):20417–24.

    Article  CAS  PubMed  Google Scholar 

  17. Rajasekaran SA, et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell. 2003;14(12):4835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruigrok EAM, van Weerden WM, Nonnekens J, et al. The future of PSMA-targeted radionuclide therapy: an overview of recent preclinical research. Pharmaceutics. 2019;11(11):560.

    Article  CAS  PubMed Central  Google Scholar 

  19. Rahbar K, Afshar-Oromieh A, Jadvar H, et al. PSMA theranostics: current status and future directions. Mol Imaging. 2018;17:1536012118776068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kopka K, Benesova M, Barinka C, et al. Glu-ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular weight theranostic radiotracers. J Nucl Med. 2017;58(2):17S-26S.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Wang S, Huang M. Structure and enzymatic activities of human serum albumin. Curr Pharm Des. 2015;21:1831–6.

    Article  CAS  PubMed  Google Scholar 

  22. Infusino I, Panteghini M. Serum albumin: accuracy and clinical use. Clin Chim Acta. 2013;419:15–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Jacobson O, Tian R, et al. Radioligand therapy of prostate cancer with a long-lasting prostate-specific membrane antigen targeting agent 90Y-DOTA-EB-MCG. Bioconjug Chem. 2018;29:2309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014;5:299.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Czerwińska M, Bilewicz A, Kruszewski M, et al. Targeted radionuclide therapy of prostate cancer—from basic research to clinical perspectives. Molecules. 2020;25(7):1743.

    Article  PubMed Central  CAS  Google Scholar 

  26. Benesova M, Bauder-Wust U, Schafer M, et al. Linker modification strategies to control. The prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA conjugated PSMA inhibitors. J Med Chem. 2016;59:1761–75.

    Article  CAS  PubMed  Google Scholar 

  27. Wustemann T, Bauder-Wust U, Schafer M, et al. Design of internalizing PSMA-specific gluureido-based radiotherapeuticals. Theranostics. 2016;6:1085–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Haberkorn U, Eder M, Kopka K, et al. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res. 2016;22(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  29. Ray BS, Chen Z, Pullambhatla M, et al. Preclinical comparative study of 68Ga-labeled DOTA, NOTA, and HBED-CC chelated Radiotracers for targeting PSMA. Bioconjug Chem. 2016;27:1447–55.

    Article  CAS  Google Scholar 

  30. Benesova M, Schafer M, Bauder-Wust U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt A, Wirtz M, Färber SF, et al. Effect of carbohydration on the theranostic tracer PSMA I&T. ACS Omega. 2018;3(7):8278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuo HT, Pan J, Zhang Z, et al. Effects of linker modification on tumor-to-kidney contrast of 68Ga-labeled PSMA-targeted imaging probes. Mol Pharm. 2018;15:3502–11.

    Article  CAS  PubMed  Google Scholar 

  33. Kelly J, Amor-Coarasa A, Ponnala S, et al. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur J Nucl Med Mol Imaging. 2018;45:1841–51.

    Article  CAS  PubMed  Google Scholar 

  34. Wurzer A, Seidl C, Morgenstern A, et al. Dual-nuclide Radiopharmaceuticals for positron emission tomography based dosimetry in radiotherapy. Chemistry. 2018;24:547–50.

    Article  CAS  PubMed  Google Scholar 

  35. Kassis AI. Therapeutic radionuclides: Biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cimadamore A, Cheng M, Santoni, , et al. New prostate cancer targets for diagnosis, imaging, and therapy: focus on prostate-specific membrane antigen. Front Oncol. 2018. https://doi.org/10.3389/fonc.2018.00653.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German Multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.

    Article  CAS  PubMed  Google Scholar 

  38. Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-Targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    Article  CAS  PubMed  Google Scholar 

  39. Champion C, Quinto MA, Morgat C, et al. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6:1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nonnekens J, Chatalic KL, Molkenboer-Kuenen JD, et al. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm. 2017;32:67–73.

    Article  CAS  PubMed  Google Scholar 

  41. Eppard E. Pre-therapeutic dosimetry employing scandium-44 for radiolabeling PSMA-617. In: Prostatectomy. https://www.intechopen.com/books/prostatectomy/pre-therapeuticdosimetry-employing-scandium-44-for-radiolabeling-psma-617. Accessed 10 Apr 2021.

  42. Zustovich F, Barsanti R. Targeted α therapies for the treatment of bone metastases. Int J Mol Sci. 2017;19:74.

    Article  PubMed Central  CAS  Google Scholar 

  43. Kiess AP, Minn I, Vaidyanathan G, et al. (2S)-2-(3-(1-carboxy-5-(4–211At-Astatobenzamido)pentyl)Ureido)-pentanedioic acid for PSMA-targeted α-particle radiopharmaceutical therapy. J Nucl Med. 2016;57:1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically localized prostate cancer AUA/ASTRO/SUO Guideline. Part I: Risk stratification, shared decision making, and care options. J Urol. 2018;199:683–90.

    Article  PubMed  Google Scholar 

  45. Trabulsi EJ, Rumble RB, Jadvar H, et al. Optimum imaging strategies for advanced prostate cancer: ASCO guideline. J Clin Oncol. 2020;38:1963–96.

    Article  CAS  PubMed  Google Scholar 

  46. Hövels AM, Heesakkers RAM, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95.

    Article  PubMed  Google Scholar 

  47. Bostwick DG, Pacelli A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    Article  CAS  PubMed  Google Scholar 

  48. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(10):S13–8.

    PubMed  PubMed Central  Google Scholar 

  49. Afshar-Oromieh A, Haberkorn U, Eder M, et al. [68Ga] Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18 F-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.

    Article  CAS  PubMed  Google Scholar 

  50. Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    Article  CAS  PubMed  Google Scholar 

  51. Fendler WP, Calais J, Allen-Auerbach M, et al. 68Ga-PSMA-11 PET/CT Interobserver agreement or prostate cancer assessments: an international multicenter prospective study. J Nucl Med. 2017 ;58(10):1617–23.

    Article  CAS  PubMed  Google Scholar 

  52. Mattiolli AB, Santos A, Vicente A, et al. Impact of 68GA-PSMA PET/CT on treatment of patients with recurrent/metastatic high risk prostate cancer—a multicenter study. Int Braz J Urol. 2018;44(5):892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of 18Ffluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90.

    Article  CAS  PubMed  Google Scholar 

  54. Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kabasakal L, Demirci E, Nematyazar J, et al. The role of PSMA PET/CT imaging in restaging of prostate cancer patients with low prostate-specific antigen levels. Nucl Med Commun. 2017;38:149–55.

    Article  PubMed  Google Scholar 

  56. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet (Lon, Engl). 2020;395:1208–16.

    Article  CAS  Google Scholar 

  57. Carlucci G, Ippisch R, Slavik R, et al. 68Ga-PSMA-11 NDA approval: a novel and successful academicpartnership. J Nucl Med. 2021;62:149–55. https://doi.org/10.2967/jnumed.120.260455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. 2-(3-{1-Carboxy-5-[(6-[18F] fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid,[18F] DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17(24):7645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu W, Zukotynski K, Emmett L, et al. A prospective study of 18F-DCFPyL PSMA PET/CT restaging in recurrent prostate cancer following primary external beam radiotherapy or brachytherapy. Int J Radiat Oncol Biol Phys. 2020;106:546–55.

    Article  PubMed  CAS  Google Scholar 

  60. Giesel FL, Will L, Lawal I, et al. Intraindividual Comparison of (18)F-PSMA-1007 and (18)FDCFPyL PET/CT in the Prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med. 2018;59:1076–80.

    Article  CAS  PubMed  Google Scholar 

  61. Giesel FL, Will L, Lawal I, et al. Intraindividual comparison of 18F-PSMA-1007 and 18FDCFPyL PET/CT in the prospective evaluation of patients with Newly diagnosed prostate carcinoma: a pilot study. J Nucl Med. 2018;59(7):1076–80.

    Article  CAS  PubMed  Google Scholar 

  62. Scarpa L, Buxbaum S, Kendler D, et al. The (68)Ga/(177)Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. Eur J Nucl Med Mol Imaging. 2017;44:788–800.

    Article  CAS  PubMed  Google Scholar 

  63. Ahmadzadehfar H, Rahbar K, Kurpig S, et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res. 2015;5:114.

    PubMed  Google Scholar 

  64. Yadav MP, Ballal S, Tripathi M, et al. (177)Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: Safety, efficacy, and quality of life assessment. Eur J Nucl Med Mol Imaging. 2017;44:81–91.

    Article  CAS  PubMed  Google Scholar 

  65. von Eyben FE, Roviello G, Kiljunen T, et al. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging. 2018;45(3):496–508.

    Article  CAS  Google Scholar 

  66. Calopedos RJS, Chalasani V, Asher R, et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20:352–60.

    Article  CAS  PubMed  Google Scholar 

  67. https://www.clinicaltrials.gov/.

  68. Hofman MS, Emmett L, Violet J, et al. TheraP: a randomized phase 2 trial of (177)Lu-PSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603). BJU Int. 2019;124(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  69. Hofman M, Violet J, Hicks R, et al. Results of a 50 patient single-center phase II prospective trial of Lutetium-177 PSMA-617 theranostics in metastatic castrate-resistant prostate cancer. J Clin Oncol. 2019;37(7):228–228.

    Article  Google Scholar 

  70. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018 ;19(6):825–33.

    Article  CAS  PubMed  Google Scholar 

  71. Calais J, Fendler W, Eiber M, et al. RESIST-PC phase 2 trial: 177Lu-PSMA-617 radionuclide therapy for metastatic castrate-resistant prostate cancer. J Clin Oncol. 2019;37(15):5028–5028.

    Article  Google Scholar 

  72. Privé BM, Peters SMB, Muselaers CHJ, et al. Lutetium-177-PSMA-617 in low-volume hormone sensitive metastatic prostate cancer, a prospective pilot study. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-20-4298.

    Article  PubMed  Google Scholar 

  73. Privé BM, et al. Lutetium-177-PSMA-I&T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial. BMC Cancer. 2020;201:884.

    Article  CAS  Google Scholar 

  74. Emmett L, Subramaniam S, Zhang AY, et al. ENZA-p: a randomized phase II trial using PSMA as a therapeutic agent and prognostic indicator in men with metastatic castration-resistant prostate cancer treated with enzalutamide (ANZUP 1901). J Clin OncoL. 2021;39(6):177–177.

    Article  Google Scholar 

  75. Ahmadzadehfar H. Targeted therapy for metastatic prostate cancer with radionuclides. Prostate cancer—leading-edge diagnostic procedures and treatments. 2016.https://www.intechopen.com/books/prostate-cancer-leading-edge-diagnostic-procedures-andtreatments/targeted-therapy-for-metastatic-prostate-cancer-with-radionuclides. Accessed 10 Feb 2021.

  76. Gröner D, Ngoc CN, Davis K, et al. Radioligand therapy with 177Lu-PSMA-617 in patients with diffuse bone marrow involvement: safety and efficacy results. J Nucl Med. 2020;61(1):1280.

    Google Scholar 

  77. Sgouros G, Bodei L, McDevitt MR, et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.

    Article  CAS  PubMed  Google Scholar 

  80. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha therapy of mCRPC with 225actinium-PSMA-617: dosimetry estimate and empirical dose finding. J Nucl Med. 2017;58:1624–31.

    Article  CAS  PubMed  Google Scholar 

  81. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795–802.

    Article  CAS  PubMed  Google Scholar 

  82. Yadav M, Ballal S, Bal C, et al. Clinical experience on 225Ac-PSMA-617 targeted α-therapy in metastatic castration resistant prostate cancer patients: safety and efficacy results. J Nucl Med. 2020;61(1):589.

    Google Scholar 

  83. van der Doelen MJ, Mehra N, Smits M, et al. Clinical experience with PSMA-Actinium-225 (Ac-225) radioligand therapy (RLT) in end-stage metastatic castration-resistant prostate cancer (mCRPC) patients. J Clin Oncol. 2018;36(6):344–344.

    Article  Google Scholar 

  84. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016 ;57(12):1941–4.

    Article  CAS  PubMed  Google Scholar 

  85. Kiess AP, Minn I, Vaidyanathan G, et al. (2S)-2-(3-(1-carboxy-5-(4–211Atastatobenzamido) pentyl)ureido)-pentanedioic acid for PSMA-targeted alpha-particle radiopharmaceutical therapy. J Nucl Med. 2016;57:1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hammer S, Larssen A, Ellingsen C, et al. Preclinical pharmacology of the PSMA-targeted thorium-227 conjugate PSMA-TTC: a novel targeted alpha therapeutic for the treatment of prostate cancer. Cancer Res. 2017. https://doi.org/10.1158/1538-7445.AM2017-5200.

    Article  Google Scholar 

  87. Hammer S., Hagemann U.B., Zitzmann-Kolbe S., et al. Preclinical activity of PSMA-TTC, a targeted alpha therapeutic in patient-derived prostate cancer models. Cancer Res. 2018; 78

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghana Parsi.

Ethics declarations

Conflicts of interest

The following authors have no disclosures: Meghana Parsi, Milap H. Desai, Devashish Desai, Sachi Singhal, Pushti Khandwala, Rashmika R. Potdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsi, M., Desai, M.H., Desai, D. et al. PSMA: a game changer in the diagnosis and treatment of advanced prostate cancer. Med Oncol 38, 89 (2021). https://doi.org/10.1007/s12032-021-01537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01537-3

Keywords

Navigation