Skip to main content

Advertisement

Log in

Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML), a myeloproliferative hematopoietic cancer, is caused by a genetic translocation between chromosomes 9 and 22. This translocation produces a small Philadelphia chromosome, which contains the Bcr-Abl oncogene. The Bcr-Abl oncogene encodes the BCR-ABL protein, upregulates various signaling pathways (JAK-STAT, MAPK/ERK, and PI3K/Akt/mTOR), and out of which the specifically highly active pathway is the PI3K/Akt/mTOR pathway. Among early treatments for CML, tyrosine kinase inhibitors (TKIs) were found to be the most effective, but drug resistance against kinase inhibitors led to the discovery of novel alternative therapies. At this point, the PI3K/Akt/mTOR pathway components became new targets due to stimulation of this pathway in TKIs-resistant CML patients. The current review article deals with reviewing the scientific literature on the PI3K/Akt/mTOR pathway inhibitors listed in the National Cancer Institute (NCI) drug dictionary and proved effective against multiple cancers. And out of those enlisted inhibitors, the US FDA has also approved some PI3K inhibitors (Idelalisib, Copanlisib, and Duvelisib) and mTOR inhibitors (Everolimus, Sirolimus, and Temsirolimus) for cancer therapy. So far, several inhibitors have been tested, and further investigations are still ongoing. Even in Imatinib, Nilotinib, and Ponatinib-resistant CML cells, a dual PI3K/mTOR inhibitor, BEZ235, showed antiproliferative activity. Therefore, by considering the literature data of these reviews and further examining some of the reported inhibitors, which proved effective against the PI3K/Akt/mTOR signaling pathway in multiple cancers, may improve the therapeutic approaches towards TKI-resistant CML cells where the respective signaling pathway gets upregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–9. https://doi.org/10.1016/0092-8674(84)90077-1.

    Article  PubMed  CAS  Google Scholar 

  2. Tridente G. Adverse events and oncotargeted kinase inhibitors. London: Academic Press; 2017. https://doi.org/10.1016/B978-0-12-809400-6.00004-4.

    Book  Google Scholar 

  3. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52. https://doi.org/10.1056/NEJMoa011573.

    Article  PubMed  CAS  Google Scholar 

  4. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study: presented in part at the 43rd annual meeting of the American Society of Hematology, Orlando, FL, December 11, 2001. Blood. 2002;99(10):3530–9. https://doi.org/10.1182/blood.V99.10.3530.

    Article  PubMed  CAS  Google Scholar 

  5. Vaidya S, Ghosh K, Vundinti BR. Recent developments in drug resistance mechanism in chronic myeloid leukemia: a review. Eur J Haematol. 2011;87(5):381–93. https://doi.org/10.1111/j.1600-0609.2011.01689.x.

    Article  PubMed  CAS  Google Scholar 

  6. Burchert A, Wang Y, Cai D, Von Bubnoff N, Paschka P, Muller-Brüsselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia. 2005;19(10):1774–82. https://doi.org/10.1038/sj.leu.2403898.

    Article  PubMed  CAS  Google Scholar 

  7. Cortes JE, Kim DW, Pinilla-Ibarz JL, Le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J. A phase 2 trial of ponatinib in Philadelphia chromosome–positive leukemias. N Engl J Med. 2013;369(19):1783–96. https://doi.org/10.1056/NEJMoa1306494.

    Article  PubMed  CAS  Google Scholar 

  8. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7(2):129–41. https://doi.org/10.1016/j.ccr.2005.01.007.

    Article  PubMed  CAS  Google Scholar 

  9. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66(11):5790–7. https://doi.org/10.1158/0008-5472.CAN-05-4187.

    Article  PubMed  CAS  Google Scholar 

  10. Polyak K, Metzger Filho O. SnapShot: breast cancer. Cancer Cell. 2012;22(4):562. https://doi.org/10.1016/j.ccr.2012.06.021.

    Article  PubMed  CAS  Google Scholar 

  11. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res. 2005;65(6):2047–53. https://doi.org/10.1158/0008-5472.CAN-04-3888.

    Article  PubMed  CAS  Google Scholar 

  13. Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. PNAS. 2010;107(25):11381–6. https://doi.org/10.1073/pnas.0906461107.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. Company Biologists Ltd. 2014;127(5):923–8. https://doi.org/10.1242/jcs.093773.

    Article  CAS  Google Scholar 

  15. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Somatic mutations in PI3Kα: structural basis for enzyme activation and drug design. Biochim Biophys Acta. 2010;1804(3):533–40. https://doi.org/10.1016/j.bbapap.2009.11.020.

    Article  PubMed  CAS  Google Scholar 

  16. Ren SY, Xue F, Feng J, Skorski T. Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol. 2005;33(10):1222–8. https://doi.org/10.1016/j.exphem.2005.06.030.

    Article  PubMed  CAS  Google Scholar 

  17. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8(3):179–83. https://doi.org/10.1016/j.ccr.2005.08.008.

    Article  PubMed  CAS  Google Scholar 

  18. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26(13):1932–40. https://doi.org/10.1038/sj.onc.1209990.

    Article  PubMed  CAS  Google Scholar 

  19. Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S, Malara N, Savino R, Rocco G, Chiappetta G, Franco R. Activating E17K mutation in the gene encoding the protein kinase AKT in a subset of squamous cell carcinoma of the lung. Cell Cycle. 2008;7(5):665–9. https://doi.org/10.4161/cc.7.5.5485.

    Article  PubMed  CAS  Google Scholar 

  20. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44. https://doi.org/10.1038/nrd2926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol. 2012;4(12):a008771. https://doi.org/10.1101/cshperspect.a008771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–64. https://doi.org/10.1158/1078-0432.CCR-12-0662.

    Article  PubMed  CAS  Google Scholar 

  23. Danisz K, Blasiak J. Role of anti-apoptotic pathways activated by BCR/ABL in the resistance of chronic myeloid leukemia cells to tyrosine kinase inhibitors. Acta Biochimica Polonica. 2013;60(4) https://doi.org/10.18388/abp.2013_2014.

  24. Hickey FB, Cotter TG. BCR-ABL regulates phosphatidylinositol 3-kinase-p110γ transcription and activation and is required for proliferation and drug resistance. J Biol Chem. 2006;281(5):2441–50. https://doi.org/10.1074/jbc.M511173200.

    Article  PubMed  CAS  Google Scholar 

  25. Hirano I, Nakamura S, Yokota D, Ono T, Shigeno K, Fujisawa S, Shinjo K, Ohnishi K. Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms. J Biol Chem. 2009;284(33):22155–65. https://doi.org/10.1074/jbc.M808182200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ren R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 5(3, 83):172. https://doi.org/10.1038/nrc1567.

  27. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Müller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16(11):2190–6. https://doi.org/10.1038/sj.leu.2402741.

    Article  PubMed  CAS  Google Scholar 

  28. Naughton R, Quiney C, Turner SD, Cotter TG. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia. 2009;23(8):1432–40. https://doi.org/10.1038/leu.2009.49.

    Article  PubMed  CAS  Google Scholar 

  29. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24. https://doi.org/10.1038/nrc3860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Moulder S, Moroney J, Helgason T, Wheler J, Booser D, Albarracin C, Morrow PK, Koenig K, Kurzrock R. Responses to liposomal doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: biologic rationale and implications for stem-cell research in breast cancer. J Clin Oncol. 2011;29(19):e572–5. https://doi.org/10.1200/JCO.2010.34.0604.

    Article  PubMed  Google Scholar 

  31. Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5):554–63. https://doi.org/10.1158/2159-8290.CD-13-0929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, Tsimberidou AM, Stepanek VM, Moulder SL, Lee JJ, Luthra R. Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors. Cell Rep. 2014;6(2):377–87. https://doi.org/10.1016/j.celrep.2013.12.035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cheng H, Zou Y, Ross JS, Wang K, Liu X, Halmos B, Ali SM, Liu H, Verma A, Montagna C, Chachoua A. RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors. Cancer Discov. 2015;5(12):1262–70. https://doi.org/10.1158/2159-8290.CD-14-0971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Moulder S, Helgason T, Janku F, Wheler J, Moroney J, Booser D, Albarracin C, Morrow PK, Atkins J, Koenig K, Gilcrease M, Kurzrock R. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer. Ann Oncol. 2015;26(7):1346–52. https://doi.org/10.1093/annonc/mdv163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kwiatkowski DJ, Choueiri TK, Fay AP, Rini BI, Thorner AR, De Velasco G, Tyburczy ME, Hamieh L, Albiges L, Agarwal N, Ho TH. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2016;22(10):2445–52. https://doi.org/10.1158/1078-0432.CCR-15-2631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hyman DM, Smyth LM, Donoghue MT, Westin SN, Bedard PL, Dean EJ, Bando H, El-Khoueiry AB, Pérez-Fidalgo JA, Mita A, Schellens JH. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol. 2017;35(20):2251. https://doi.org/10.1200/JCO.2017.73.0143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. https://doi.org/10.1038/nrc2664.

    Article  PubMed  CAS  Google Scholar 

  38. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–32. https://doi.org/10.1016/j.semcancer.2019.07.009.

    Article  PubMed  CAS  Google Scholar 

  39. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kater AP, Tonino SH, Kersten MJ, Hagenbeek A, Spiering M, van Oers MH, Xin Y, Ramanathan S, Aiello M, Jun S. Interim analysis of dose-escalation stage of a phase 1b study evaluating safety and pharmacology of gs-9820, a second-generation, selective, pi3kd-inhibitor in recurrent lymphoid malignancies. Blood. 2013;122 https://doi.org/10.1182/blood.V122.21.2881.2881.

  41. Owusu-Brackett N, Zhao M, Akcakanat A, Evans KW, Yuca E, Meric-Bernstam F. Efficacy of PI3Kβ inhibitor AZD8186 in PTEN-deficient triple-negative breast cancer. Cancer Res. 2018:5802–2. https://doi.org/10.1158/1538-7445.AM2018-5802.

  42. de Bono JS, Hansen A, Choudhury AD, Cook N, Heath EI, Higano C, Linch M, Martin-Liberal J, Rathkopf DE, Wisinski KB, Barry S. AZD8186, a potent and selective inhibitor of PI3Kb/d, as monotherapy and in combination with abiraterone acetate plus prednisone (AAP), in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). Ann Oncol. 2018;29(8) https://doi.org/10.1093/annonc/mdy284.042.

  43. Carnevalli LS, Sinclair C, Taylor MA, Gutierrez PM, Langdon S, Coenen-Stass AM, Mooney L, Hughes A, Jarvis L, Staniszewska A, Crafter C. PI3Kα/δ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8+ T-cell activity. J Immunother Cancer. 2018;6(1):1–14. https://doi.org/10.1186/s40425-018-0457-0.

    Article  Google Scholar 

  44. Wu YH, Huang YF, Chen CC, Huang CY, Chou CY. Comparing PI3K/Akt inhibitors used in ovarian cancer treatment. Front Pharmacol. 2020;11:206. https://doi.org/10.3389/fphar.2020.00206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chang KY, Tsai SY, Wu CM, Yen CJ, Chuang BF, Chang JY. Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clin Cancer Res. 2011;17(22):7116–26. https://doi.org/10.1158/1078-0432.CCR-11-0796.

    Article  PubMed  CAS  Google Scholar 

  46. Zou Y, Qi Z, Guo W, Zhang L, Ruscetti M, Shenoy T, Liu N, Wu H. Cotargeting the cell-intrinsic and microenvironment pathways of prostate cancer by PI3Kα/β/δ inhibitor BAY1082439. Mol Cancer Ther. 2018;17(10):2091–9. https://doi.org/10.1158/1535-7163.MCT-18-0038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Baumann P, Schneider L, Mandl-Weber S, Oduncu F, Schmidmaier R. Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anti-Cancer Drugs. 2012;23(1):131–8. https://doi.org/10.1097/CAD.0b013e32834c8683.

    Article  PubMed  CAS  Google Scholar 

  48. Simioni C, Ultimo S, Martelli AM, Zauli G, Milani D, McCubrey JA, Capitani S, Neri LM. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human acute lymphoblastic leukemia. Oncotarget. 2016;7(48):79842. https://doi.org/10.18632/oncotarget.13035.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Harding JJ, Bauer TM, Tan DS, Bedard PL, Rodon J, Doi T, Schnell C, Iyer V, Baffert F, Radhakrishnan R, Fabre C. Characterization and phase I study of CLR457, an orally bioavailable pan-class I PI3-kinase inhibitor. Invest New Drug. 2019;37(2):271–81. https://doi.orh/10.1007/s10637-018-0627-4

    Article  CAS  Google Scholar 

  50. Sun K, Atoyan R, Borek MA, Dellarocca S, Samson MES, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A. Dual HDAC and PI3K inhibitor CUDC-907 downregulates MYC and suppresses growth of MYC-dependent cancers. Mol Cancer Ther. 2017;16(2):285–99. https://doi.org/10.1158/1535-7163.MCT-16-0390.

    Article  PubMed  CAS  Google Scholar 

  51. Kotian S, Zhang L, Boufraqech M, Gaskins K, Gara SK, Quezado M, Nilubol N, Kebebew E. Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases. Clin Cancer Res. 2017;23(17):5044–54. https://doi.org/10.1158/1078-0432.CCR-17-1043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chen Y, Peubez C, Smith V, Xiong S, Kocsis-Fodor G, Kennedy B, Wagner S, Balotis C, Jayne S, Dyer MJ, Macip S. CUDC-907 blocks multiple pro-survival signals and abrogates microenvironment protection in CLL. J Cell Mol Med. 2019;23(1):340–8. https://doi.org/10.1111/jcmm.13935.

    Article  PubMed  CAS  Google Scholar 

  53. Li ZJ, Hou YJ, Hao GP, Pan XX, Fei HR, Wang FZ. CUDC-907 enhances TRAIL-induced apoptosis through upregulation of DR5 in breast cancer cells. J Cell Commun Signal. 2020:1–11. https://doi.org/10.1007/s12079-020-00558-3.

  54. Edgar K, Hanan E, Staben S, Schmidt S, Hong R, Song K, Young A, Hamilton P, Arrazate A, de la Cruz C, Belvin M. Preclinical characterization of GDC-0077, a specific PI3K alpha inhibitor in early clinical development. 2017; https://doi.org/10.1158/1538-7445.AM2017-156.

  55. Ding LT, Zhao P, Yang ML, Lv GZ, Zhao TL. GDC-0084 inhibits cutaneous squamous cell carcinoma cell growth. Biochem Bioph Res Co. 503(3):1941–8. https://doi.org/10.1016/j.bbrc.2018.07.139.

  56. Dong J, Martinez-Ledesma E, Nguyen N, Carrillo C, Piao Y, Henry V, Park SY, Tiao N, Stephan C, Verhaak R, Sulman E. Arsenic trioxide sensitizes glioma stem cells to brain penetrant PI3K and mTOR inhibitor GDC-0084. 2018; https://doi.org/10.1158/1538-7445.AM2018-2945.

  57. Altieri DC, Ghosh JC. U.S. Patent Application No. 15/308,130. 2017.

  58. Tao JJ, Castel P, Radosevic-Robin N, Elkabets M, Auricchio N, Aceto N, Weitsman G, Barber P, Vojnovic B, Ellis H, Morse N. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci Signal. 2014;7(318):ra29-ra29. https://doi.org/10.1126/scisignal.2005125.

    Article  CAS  Google Scholar 

  59. Bei S, Li F, Li H, Li J, Zhang X, Sun Q, Feng L. Inhibition of gastric cancer cell growth by a PI3K-mTOR dual inhibitor GSK1059615. Biochem Bioph Res Co. 2019;511(1):13–20. https://doi.org/10.1016/j.bbrc.2019.02.032.

    Article  CAS  Google Scholar 

  60. Zhang X, Qian Y, Li F, Bei S, Li M, Feng L. microRNA-9 selectively targets LMX1A to promote gastric cancer cell progression. Biochem Biophys Res. 2018;505(2):405–12. https://doi.org/10.1016/j.bbrc.2018.09.101.

    Article  CAS  Google Scholar 

  61. Vaidhyanathan S, Wilken-Resman B, Ma DJ, Parrish KE, Mittapalli RK, Carlson BL, Sarkaria JN, Elmquist WF. Factors influencing the central nervous system distribution of a novel phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor GSK2126458: implications for overcoming resistance with combination therapy for melanoma brain metastases. J Pharmacol Exp Ther. 2016;356(2):251–9. https://doi.org/10.1124/jpet.115.229393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Narov K, Yang J, Samsel P, Jones A, Sampson JR, Shen MH. The dual PI3K/mTOR inhibitor GSK2126458 is effective for treating solid renal tumours in Tsc2+/−mice through suppression of cell proliferation and induction of apoptosis. Oncotarget. 2017;8(35):58504. https://doi.org/10.18632/oncotarget.17215.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen J, Dai J, Kang Z, Yang T, Zhao Q, Zheng J, Zhang X, Zhang J, Xu J, Sun G, Yang L. A combinatorial strategy for overcoming primary and acquired resistance of MEK inhibition in colorectal cancer. Exp Cell Res. 2020:112060. https://doi.org/10.1016/j.yexcr.2020.112060.

  64. Mateo J, Ganji G, Lemech C, Burris HA, Han SW, Swales K, Decordova S, DeYoung MP, Smith DA, Kalyana-Sundaram S, Wu J. A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2017;23(19):5981–92. https://doi.org/10.1158/1078-0432.CCR-17-0725.

    Article  PubMed  CAS  Google Scholar 

  65. Peng W, Xu C, Melendez B, Jackson H, McKenzi JA, Williams LJ, Chen Y, Mbofung RM, Leahey SE, Lizee G, Davies MA. OX40 agonist antibody-based combination therapy with PI3Kβ selective inhibitor enhances T cell immunity. 2018; https://doi.org/10.1158/1538-7445.AM2018-4938.

  66. Yamaji M, Ota A, Wahiduzzaman M, Karnan S, Hyodo T, Konishi H, Tsuzuki S, Hosokawa Y, Haniuda M. Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med-US. 2017;6(11):2646–59. https://doi.org/10.1002/cam4.1179.

    Article  CAS  Google Scholar 

  67. Kinoshita S, Ri M, Kanamori T, Aoki S, Yoshida T, Narita T, Totani H, Ito A, Kusumoto S, Ishida T, Komatsu H. Potent antitumor effect of combination therapy with sub-optimal doses of Akt inhibitors and pomalidomide plus dexamethasone in multiple myeloma. Oncol Lett. 2018;15(6):9450–6. https://doi.org/10.3892/ol.2018.8501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Blagden SP, Hamilton AL, Mileshkin L, Wong S, Michael A, Hall M, Goh JC, Lisyanskaya AS, DeSilvio M, Frangou E, Stronach EA. Phase IB dose escalation and expansion study of AKT inhibitor Afuresertib with carboplatin and paclitaxel in recurrent platinum-resistant ovarian cancer. Clin Cancer Res. 2019;25(5):1472–8. https://doi.org/10.1158/1078-0432.CCR-18-2277.

    Article  PubMed  CAS  Google Scholar 

  69. Agarwal N, Tagawa ST, Chatta GS, Pal SK, Goel S, Mazhari R, Heaton C, Benaim E. Results from a phase 1b/2 study of RX-0201, a novel AKT-1 antisense, combined with everolimus to treat metastatic clear cell renal carcinoma. J Clin Oncol. 2016;34(15):2559. https://doi.org/10.1200/JCO.2016.34.15_suppl.2559.

    Article  Google Scholar 

  70. Roth GS, Jilkova ZM, Kuyucu AZ, Kurma K, Pour STA, Abbadessa G, Yu Y, Busser B, Marche PN, Leroy V, Decaens T. Efficacy of AKT inhibitor ARQ 092 compared with sorafenib in a cirrhotic rat model with hepatocellular carcinoma. Mol Cancer Ther. 2017;16(10):2157–65. https://doi.org/10.1158/1535-7163.

    Article  PubMed  Google Scholar 

  71. Kim K, Li J, Barazia A, Tseng A, Youn SW, Abbadessa G, Yu Y, Schwartz B, Andrews RK, Gordeuk VR, Cho J. ARQ 092, an orally-available, selective AKT inhibitor, attenuates neutrophil-platelet interactions in sickle cell disease. Haematologica. 2017;102(2):246–59. https://doi.org/10.3324/haematol.2016.151159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wang J, Chandrasekhar V, Abbadessa G, Yu Y, Schwartz B, Kontaridis MI. In vivo efficacy of the AKT inhibitor ARQ 092 in Noonan syndrome with multiple lentigines-associated hypertrophic cardiomyopathy. PLoS One. 2017;12(6):e0178905. https://doi.org/10.1371/journal.pone.0178905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Nandan D, Zhang N, Yu Y, Schwartz B, Chen S, Kima PE, Reiner NE. Miransertib (ARQ 092), an orally-available, selective Akt inhibitor is effective against Leishmania. PLoS One. 2018;13(11):e0206920. https://doi.org/10.1371/journal.pone.0206920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Biesecker LG, Edwards M, O'Donnell S, Doherty P, MacDougall T, Tith K, Kazakin J, Schwartz B. Clinical report: one year of treatment of Proteus syndrome with miransertib (ARQ 092). Mol Case Stud. 2020;6(1):a004549. https://doi.org/10.1101/mcs.a004549.

    Article  Google Scholar 

  75. Pant S, Subbiah V, Rodon J, Janku F, Hong D, Karp D, Piha-Paul S, Tsimberidou AM, Naing A, Fu S, Savage RE. Abstract CT024: results of a phase I dose escalation study of ARQ 751 in adult subjects with advanced solid tumors with AKT1, 2, 3 genetic alterations, activating PI3K mutations, PTEN-null, or other known actionable PTEN mutations. Cancer Res. 2018;78(13):615. https://doi.org/10.1158/1538-7445.AM2018-CT024.

    Article  Google Scholar 

  76. Kozinova M, Joshi S, Devarajan K, Zook P, D'Souza JW, Farma JM, Esnaola N, Foroughi R, Yu Y, Schwartz B, Hall T. Combinations of imatinib mesylate with AKT inhibitor (miransertib, ARQ 751) or FGFR inhibitor (derazantinib) show synergy in GIST cell lines and preclinical models. Cancer Res. 2018;78(13):4808. https://doi.org/10.1158/1538-7445.AM2018-4808.

    Article  Google Scholar 

  77. Keerthi K, Jilkova ZM, Roth GS, Abbadessa G, Yu Y, Marche P, Decaens T. Effect of novel AKT inhibitor ARQ 751 as single agent and its combination with sorafenib on hepatocellular carcinoma in a cirrhotic rat model. J Hepatol. 2017;66(1):S459–60. https://doi.org/10.1016/S0168-8278(17)31300-4.

    Article  Google Scholar 

  78. Yu Y, Harring A, Volckova E, Savage RE, Schwartz B. Abstract C076: in vitro and in vivo combination of ARQ 751 with PARP inhibitors, CDK4/6 inhibitors, fulvestrant and paclitaxel. Mol Cancer Ther. 2019;18(12):C076. https://doi.org/10.1158/1535-7163.TARG-19-C076.

    Article  Google Scholar 

  79. Politz O, Siegel F, Barfacker L, Bomer U, Hagebarth A, Scott WJ, Michels M, Ince S, Neuhaus R, Meyer K, Fernández-Montalvn AE. BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling dependent tumor growth in mouse models. Int J Cancer. 2017;140(2):449–59. https://doi.org/10.1002/ijc.30457.

    Article  PubMed  CAS  Google Scholar 

  80. Politz O, Baerfacker L, Ince S, Haegebarth A, Liu N, Neuhaus R, Boemer U, Michels M, Ziegelbauer K, Mumberg D. Allosteric AKT1/2-inhibitor BAY 1125976 as potent inhibitor in luminal breast cancer resistant to antihormone therapy. Cancer Res. 2016;76(14):379. https://doi.org/10.1158/1538-7445.AM2016-379.

    Article  Google Scholar 

  81. Lang L, Lam T, Chen A, Jensen C, Duncan L, Kong FC, Kurago ZB, Shay C, Teng Y. Circumventing AKT-associated Radioresistance in oral cancer by novel nanoparticle-encapsulated capivasertib. Cell. 2020;9(3):533. https://doi.org/10.3390/cells9030533.

    Article  CAS  Google Scholar 

  82. Smyth LM, Tamura K, Oliveira M, Ciruelos EM, Mayer IA, Sablin MP, Biganzoli L, Ambrose HJ, Ashton J, Barnicle A, Cashell DD. Capivasertib, an AKT kinase inhibitor, as monotherapy or in combination with fulvestrant in patients with AKT1E17K-mutant. ER-Positive Metastatic Breast Cancer Clin Cancer Res. 2020; https://doi.org/10.1158/1078-0432.CCR-19-3953.

  83. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, Baird RD, Park YH, Hall PS, Perren T, Stein RC. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38(5):423–33. https://ascopubs.org/doi/pdf/10.1200/JCO.19.00368

    Article  CAS  PubMed  Google Scholar 

  84. Westin SN, Sill MW, Coleman RL, Waggoner S, Moore KN, Mathews CA, Martin LP, Modesitt SC, Lee S, Ju Z, Mills GB. Safety lead-in of the MEK inhibitor trametinib in combination with GSK2141795, an AKT inhibitor, in patients with recurrent endometrial cancer: an NRG oncology/GOG study. Gynecol Oncol. 2019;155(3):420–8. https://doi.org/10.1016/j.ygyno.2019.09.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Aghajanian C, Bell-McGuinn KM, Burris HA, Siu LL, Stayner LA, Wheler JJ, Hong DS, Kurkjian C, Pant S, Santiago-Walker A, Gauvin JL. A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral Akt inhibitor GSK2141795 in patients with solid tumors. Invest New Drug. 2018;36(6):1016–25. https://doi.org/10.1007/s10637-018-0591-z.

    Article  Google Scholar 

  86. Tao K, Yin Y, Shen Q, Chen Y, Li R, Chang W, Bai J, Liu W, Shi L, Zhang P. Akt inhibitor MK-2206 enhances the effect of cisplatin in gastric cancer cells. Biom Rep. 2016;4(3):365–8. https://doi.org/10.3892/br.2016.594.

    Article  CAS  Google Scholar 

  87. Narayan RS, Fedrigo CA, Brands E, Dik R, Stalpers LJ, Baumert BG, Slotman BJ, Westerman BA, Peters GJ, Sminia P. The allosteric AKT inhibitor MK2206 shows a synergistic interaction with chemotherapy and radiotherapy in glioblastoma spheroid cultures. BMC Cancer. 2017;17(1):204. https://doi.org/10.11186/s12885-017-3193-9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, Akcakanat A, Li Y, Abramson V, Litton J, Chavez-MacGregor M. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21(1):78. https://doi.org/10.1186/s13058-019-1154-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Larsen JT, Shanafelt TD, Leis JF, LaPlant B, Call T, Pettinger A, Hanson C, Erlichman C, Habermann TM, Reeder C, Nikcevich D. Akt inhibitor MK-2206 in combination with bendamustine and rituximab in relapsed or refractory chronic lymphocytic leukemia: results from the N1087 alliance study. Am J Hematol. 2017;92(8):759–63. https://doi.org/10.1002/ajh.24762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther. 2011;10(3):395–403. https://doi.org/10.1158/1535-7163.MCT-10-0905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhou HY, Huang SL. Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer. 2012;31(1):8–18. https://doi.org/10.5732/cjc.011.10281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conductor of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://doi.org/10.1016/j.cmet.2016.05.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Liu TS, Wang X, You LU, Piao YS, Lin ZH, Ren XS. Effects of AZD8055 on autophagy and apoptosis in cholangiocarcinoma cells. Chinese J Pathophysiol. 2018;34(6):1020–4.

    Google Scholar 

  94. Xu DQ, Toyoda H, Yuan XJ, Qi L, Chelakkot VS, Morimoto M, Hanaki R, Kihira K, Hori H, Komada Y, Hirayama M. Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo. Exp Cell Res. 2018;365(2):177–84. https://doi.org/10.1016/j.yexcr.2018.02.032.

    Article  PubMed  CAS  Google Scholar 

  95. Chen Y, Lee CH, Tseng BY, Tsai YH, Tsai HW, Yao CL, Tseng SH. AZD8055 exerts antitumor effects on colon cancer cells by inhibiting mTOR and cell-cycle progression. Anticancer Res. 2018;38(3):1445–54. https://doi.org/10.21873/anticanres.12369.

    Article  PubMed  CAS  Google Scholar 

  96. Zhao T, Siu IM, Williamson T, Zhang H, Ji C, Burger P, Cottone L, Flanagan A, Hann C, Gallia G. Rare-29 Azd8055 enhances in vivo efficacy of Afatinib in Chordomas. Neuro-Oncol. 2019;21(6):vi227. https://doi.org/10.1093/neuonc/noz175.952.

    Article  PubMed Central  Google Scholar 

  97. De Braud FG, Machiels JPH, Tiseo M, Rottey S, Duca M, Laruelle M, Salvagni S, Lapeire L, Manfreda L, Veau C, Fischer D. Phase I study of mTORC1/2 inhibitor BI 860585 as single agent or with exemestane or paclitaxel in patients with advanced solid tumors. J Clin Oncol. 2016;34(15):2545. https://doi.org/10.1200/JCO.2016.34.15_suppl.2545.

    Article  Google Scholar 

  98. De Braud FG, Wu WJ. A dose escalation pharmacokinetic (PK) and pharmacodynamic (PD) study of mTORC1/2 inhibitor XP-105 (BI 860585) as monotherapy and in combination with exemestane or paclitaxel in patients (pts) with advanced solid tumors. J Clin Oncol. 2019;34(15):2545. https://doi.org/10.1200/JCO.2019.37.15_suppl.3127.

    Article  Google Scholar 

  99. Xie Z, Wang J, Liu M, Chen D, Qiu C, Sun K. CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo. PLoS One. 2017;12(3):e0173252. https://doi.org/10.1371/journal.pone.0173252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wang JY, Jin X, Zhang X, Li XF. CC-223 inhibits human head and neck squamous cell carcinoma cell growth. Biochem Bioph Res Co. 2018;496(4):1191–6. https://doi.org/10.1016/j.bbrc.2018.01.168.

    Article  CAS  Google Scholar 

  101. Zhou Y, Peng Y, Tang H, He X, Wang Z, Hu D, Zhou X. Autophagy induction contributes to GDC-0349 resistance in head and neck squamous cell carcinoma (HNSCC) cells. Biochem Bioph Res Co. 2016;477(2):174–80. https://doi.org/10.1016/j.bbrc.2016.06.039.

    Article  CAS  Google Scholar 

  102. Wang X, Meng N, Wang S, Zhang Y, Lu L, Wang R, Ruan H, Jiang K, Wang H, Ran D, Zhan C. Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. J Control Release. 2019;316:381–92. https://doi.org/10.1016/j.jconrel.2019.11.005.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang Q, Zhang Y, Chen Y, Qian J, Zhang X, Yu K. A novel mTORC1/2 inhibitor (MTI-31) inhibits tumor growth, epithelial–mesenchymal transition, metastases, and improves antitumor immunity in preclinical models of lung cancer. Clin Cancer Res. 2019;25(12):3630–42. https://doi.org/10.1158/1078-0432.CCR-18-2548.

    Article  PubMed  CAS  Google Scholar 

  104. Manevich Y, Reyes L, Britten C, Townsend D, Tew KD. Targeting redox signaling and bioenergetics determine lung cancer sensitivity to a new isoflavone, ME-344. J Pharmacol Exp Ther. 2016;358(2):199–208. https://doi.org/10.1124/jpet.115.229344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jeyaraju DV, Hurren R, Wang X, MacLean N, Gronda M, Shamas-Din A, Minden MD, Giaever G, Schimmer AD. A novel isoflavone, ME-344, targets the cytoskeleton in acute myeloid leukemia. Oncotarget. 2016;7(31):49777–85. https://doi.org/10.18632/oncotarget.10446.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Quintela-Fandino M, Morales S, Cortes-Salgado A, Manso L, Apala JV, Munoz M, Cudos AG, Fortuny JS, Gion M, Lopez-Alonso A, Cortes J. Randomized phase 0/I trial of the mitochondrial inhibitor ME-344 or placebo added to bevacizumab in early HER2-negative breast cancer. Clin Cancer Res. 2020;26(1):35–45. https://doi.org/10.1158/1078-0432.CCR-19-2023.

    Article  PubMed  CAS  Google Scholar 

  107. Zhi X, Chen W, Xue F, Liang C, Chen BW, Zhou Y, Wen L, Hu L, Shen J, Bai X, Liang T. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget. 2015;6(28):26230–41. https://doi.org/10.18632/oncotarget.4579.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhi X, Xue F, Chen W, Liang C, Liu H, Ma T, Xia X, Hu L, Bai X, Liang T. OSI-027 modulates acute graft-versus-host disease after liver transplantation in a rat model. Liver Transplant. 2017;23(9):1186–98. https://doi.org/10.1002/lt.24797.

    Article  Google Scholar 

  109. Huang JC, Cui ZF, Chen SM, Yang LJ, Lian HK, Liu B, Su ZH, Liu JS, Wang M, Hu ZB, Ouyang JY, Li QC, Lu H. NVP-BEZ235 synergizes cisplatin sensitivity in osteosarcoma. Oncotarget. 2017;9(12):10483–96. https://doi.org/10.18632/oncotarget.23711.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Helmy MW, Ghoneim AI, Katary MA, Elmahdy RK. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis. Mol Biol Rep. 2020;47(3):2217–30. https://doi.org/10.1007/s11033-020-05327-4.

    Article  PubMed  CAS  Google Scholar 

  111. Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T, Ohyashiki K. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther. 2014;15(2):207–15. https://doi.org/10.4161/cbt.26725.

    Article  PubMed  CAS  Google Scholar 

  112. Xin P, Li C, Zheng Y, Peng Q, Xiao H, Huang Y, Zhu X. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines. Drug Des Devel Ther. 2017;11:1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mitchell R, Hopcroft LE, Baquero P, Allan EK, Hewit K, James D, Hamilton G, Mukhopadhyay A, O’prey J, Hair A, Melo JV. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. JNCI. 2018;110(5):467–78. https://doi.org/10.1093/jnci/djx236.

    Article  PubMed  CAS  Google Scholar 

  114. Yokota T, Bendell JC, LoRusso P, Tsushima T, Desai V, Kenmotsu H, Watanabe J, Ono A, Murugesan BG, Silva J, Naito T. A call for global harmonization of phase I oncology trials: results from two parallel, first-in-human phase I studies of DS-7423, an oral PI3K/mTOR dual inhibitor in advanced solid tumors conducted in the United States and Japan. J Clin Oncol. 2017;35(15):2536. https://doi.org/10.1200/JCO.2017.35.15_suppl.2536.

    Article  Google Scholar 

  115. Yokota T, Bendell J, LoRusso P, Tsushima T, Desai V, Kenmotsu H, Watanabe J, Ono A, Murugesan B, Silva J, Naito T. Impact of race on dose selection of molecular-targeted agents in early-phase oncology trials. Br J Cancer. 2018;118(12):1571–9. https://doi.org/10.1038/s41416-018-0102-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Makii C, Ikeda Y, Oda K, Uehara Y, Nishijima A, Koso T, Kawata Y, Kashiyama T, Miyasaka A, Sone K, Tanikawa M. Anti-tumor activity of dual inhibition of phosphatidylinositol 3-kinase and MDM2 against clear cell ovarian carcinoma. Gynecol Oncol. 2019;155(2):331–9. https://doi.org/10.1016/j.ygyno.2019.08.028.

    Article  PubMed  CAS  Google Scholar 

  117. Zaidi AH, Kosovec JE, Matsui D, Omstead AN, Raj M, Rao RR, Biederman RW, Finley GG, Landreneau RJ, Kelly RJ, Jobe BA. PI3K/mTOR dual inhibitor, LY3023414, demonstrates potent antitumor efficacy against esophageal adenocarcinoma in a rat model. Ann Surg. 2017;266(1):91–8. https://doi.org/10.1097/SLA.0000000000001908.

    Article  PubMed  Google Scholar 

  118. Bendell JC, Varghese AM, Hyman DM, Bauer TM, Pant S, Callies S, Lin J, Martinez R, Wickremsinhe E, Fink A, Wacheck V. A first-in-human phase 1 study of LY3023414, an oral PI3K/mTOR dual inhibitor, in patients with advanced cancer. Clin Cancer Res. 2018;24(14):3253–62. https://doi.org/10.1158/1078-0432.CCR-17-3421.

    Article  PubMed  CAS  Google Scholar 

  119. Zheng L, Li H, Mo Y, Qi G, Liu B, Zhao J. Autophagy inhibition sensitizes LY3023414-induced anti-glioma cell activity in vitro and in vivo. Oncotarget. 2017;8(58):98964–73. https://doi.org/10.18632/oncotarget.22147.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zou Y, Ge M, Wang X. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo. Biochem Bioph Res Co. 2017;490(2):385–92. https://doi.org/10.1016/j.bbrc.2017.06.052.

    Article  CAS  Google Scholar 

  121. Rubinstein MM, Hyman DM, Caird I, Won H, Soldan K, Seier K, Iasonos A, Tew WP, O’Cearbhaill RE, Grisham RN, Hensley ML. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer. 2020;126(6):1274–82. https://doi.org/10.1002/cncr.32677.

    Article  PubMed  CAS  Google Scholar 

  122. Fei HR, Zhou XL, Yang MF, Sun BL, Yang XY, Wang FZ. Inhibition of autophagy enhances effects of PF-04691502 on apoptosis and DNA damage of lung cancer cells. Int J Biochem Cell B. 2016;78:52–62. https://doi.org/10.1016/j.biocel.2016.06.023.

    Article  CAS  Google Scholar 

  123. Bresin A, Cristofoletti C, Monzo F, Caprini E, Citterich MH, Frezzolini A, Monopoli A, Benucci R, Cantonetti M, Scala E, Russo G. The PI3K/mTOR dual inhibitor PF-04691502 shows antitumor activity in Sezary cells and in a xenograft mouse model. Cancer Res. 2019;79(13):3912. https://doi.org/10.1158/1538-7445.AM2019-3912.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support received from the Central University of Punjab, Bhatinda, India, in writing this manuscript. PS and VK are grateful to the Council of Scientific and Industrial Research, New Delhi, India, for the award of the fellowship for the Ph.D. degree program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malkhey Verma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, V., Gupta, S.K. et al. Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review. Med Oncol 38, 10 (2021). https://doi.org/10.1007/s12032-021-01462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01462-5

Keywords

Navigation