Skip to main content

Advertisement

Log in

High total bilirubin level is a significant risk factor for severe neutropenia in patients receiving irinotecan-based chemotherapy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Irinotecan is effective for the treatment of metastatic colorectal cancer (mCRC) and advanced pancreatic cancer (aPC). However, these treatments are often limited due to the incidence of severe neutropenia. We identified risk factors for severe neutropenia in patients with mCRC or aPC, receiving irinotecan-based chemotherapy regimens. The study selected 104 patients (mCRC: 53 and aPC: 51) who received irinotecan-based chemotherapy between January 2014 and May 2018 and who were included in the present study. The initial dose of irinotecan was 150 mg/m2 in all patients, and patients with a lower initial dose of irinotecan were excluded. Severe neutropenia (grade ≥ 3) occurred in 56 patients (53.8%). Multivariable Cox proportional hazards analysis indicated that modified FOLFIRINOX (mFOLFIRINOX) and serum total bilirubin (T-Bil) were significant risk factors for severe neutropenia. Moreover, with receiver-operating characteristic (ROC) curve analysis, the cutoff for T-Bil was found to be 0.7 mg/dL. Among patients treated with mFOLFIRINOX therapy, the incidence of severe neutropenia was significantly higher in patients with high level of T-Bil (> 0.7 mg/dL) than in those without it (93.8% vs 55.0%, P = 0.006). A chemotherapy regimen (modified FOLFIRINOX therapy) and T-Bil > 0.7 mg/dL were significant risk factors for severe neutropenia in patients receiving 150 mg/m2 irinotecan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shimada Y, Yoshino M, Wakui A, Nakao I, Futatsuki K, Sakata Y, et al. Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol. 1993;11(5):909–13.

    Article  CAS  Google Scholar 

  2. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355(9209):1041–7.

    Article  CAS  Google Scholar 

  3. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22(2):229–37.

    Article  CAS  Google Scholar 

  4. Yamazaki K, Nagase M, Tamagawa H, Ueda S, Tamura T, Murata K, et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol. 2016;27(8):1539–46.

    Article  CAS  Google Scholar 

  5. Köhne CH, Hofheinz R, Mineur L, Letocha H, Greil R, Thaler J, et al. First-line panitumumab plus irinotecan/5-fluorouracil/leucovorin treatment in patients with metastatic colorectal cancer. J Cancer Res Clin Oncol. 2012;138(1):65–72.

    Article  Google Scholar 

  6. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

    Article  CAS  Google Scholar 

  7. Yoshida K, Iwashita T, Uemura S, Maruta A, Okuno M, Ando N, et al. A multicenter prospective phase II study of first-line modified FOLFIRINOX for unresectable advanced pancreatic cancer. Oncotarget. 2017;8(67):111346–55.

    Article  Google Scholar 

  8. Ozaka M, Ishii H, Sato T, Ueno M, Ikeda M, Uesugi K, et al. A phase II study of modified FOLFIRINOX for chemotherapy-naïve patients with metastatic pancreatic cancer. Cancer Chemother Pharmacol. 2018;81(6):1017–23.

    Article  CAS  Google Scholar 

  9. Kono A, Hara Y. Conversion of CPT-11 into SN-38 in human tissues. Gan To Kagaku Ryoho. 1991;18(12):2175–8.

    CAS  PubMed  Google Scholar 

  10. Kawato Y, Aonuma M, Matsumoto K. Production of SN-38, a main metabolite of the camptothecin derivative CPT-11, and its species and tissue specificities. Gan To Kagaku Ryoho. 1991;6(6):899–907.

    CAS  Google Scholar 

  11. Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics. 2007;17(7):497–504.

    Article  CAS  Google Scholar 

  12. Sai K, Sawada J, Minami H. Irinotecan pharmacogenetics in Japanese cancer patients: roles of UGT1A1*6 and *28. Yakugaku Zasshi. 2008;128(4):575–84.

    Article  CAS  Google Scholar 

  13. Satoh T, Ura T, Yamada Y, Yamazaki K, Tsujinaka T, Munakata M, et al. Genotype-directed, dose-finding study of irinotecan in cancer patients with UGT1A1*28 and/or UGT1A1*6 polymorphisms. Cancer Sci. 2011;102(10):1868–73.

    Article  CAS  Google Scholar 

  14. Miyata Y, Touyama T, Kusumi T, Morita Y, Mizunuma N, Taniguchi F, et al. UDP-glucuronosyltransferase 1A1*6 and *28 polymorphisms as indicators of initial dose level of irinotecan to reduce risk of neutropenia in patients receiving FOLFIRI for colorectal cancer. Int J Clin Oncol. 2016;21(4):696–703.

    Article  CAS  Google Scholar 

  15. Fujii H, Yamada Y, Watanabe D, Matsuhashi N, Takahashi T, Yoshida K, et al. Dose adjustment of irinotecan based on UGT1A1 polymorphisms in patients with colorectal cancer. Cancer Chemother Pharmacol. 2019;83(1):123–9.

    Article  CAS  Google Scholar 

  16. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.

    Article  CAS  Google Scholar 

  17. Ichikawa W, Uehara K, Minamimura K, Tanaka C, Takii Y, Miyauchi H, et al. An internally and externally validated nomogram for predicting the risk of irinotecan-induced severe neutropenia in advanced colorectal cancer patients. Br J Cancer. 2015;112(10):1709–16.

    Article  CAS  Google Scholar 

  18. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27(16):2604–14.

    Article  CAS  Google Scholar 

  19. Negoro Y, Yano R, Watanabe K, Kayano Y, Nakamura T, Masada M, et al. Principal factors of irinotecan-induced severe neutropenia other than UGT1A1 gene polymorphism. Iryo Yakugaku. 2014;40(8):454–62.

    Google Scholar 

  20. Makihara K, Azuma S, Kawato N, Ueno H, Nakata I. Pre-treatment serum total bilirubin level as an indicator of optimal CPT-11 dosage. Cancer Chemother Pharmacol. 2015;75(2):273–9.

    Article  CAS  Google Scholar 

  21. van der Bol J, Mathijssen RH, Loos WJ, Friberg LE, van Schaik RH, de Jonge MJ, et al. Cigarette smoking and irinotecan treatment: pharmacokinetic interaction and effects on neutropenia. J Clin Oncol. 2007;25(19):2719–26.

    Article  Google Scholar 

  22. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4(2):627–35.

    Google Scholar 

  23. Raijmakers MT, Jansen PL, Steegers EA, Peters WH. Association of human liver bilirubin UDP-glucuronyltransferase activity with a polymorphism in the promoter region of the UGT1A1 gene. J Hepatol. 2000;33(3):348–51.

    Article  CAS  Google Scholar 

  24. Tanaka H, Saito K, Mino K, Izumi K, Harada M, Isobe H. Assessment of total bilirubin or SN-38/SN-38G ratio as a predictor of severe irinotecan toxicity. Gan To Kagaku Ryoho. 2009;36(9):1505–9.

    CAS  PubMed  Google Scholar 

  25. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P, et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Cancer Res. 2005;11(3):1226–36.

    CAS  Google Scholar 

  26. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60(24):6921–6.

    CAS  PubMed  Google Scholar 

  27. Kitagawa C, Ando M, Ando Y, Sekido Y, Wakai K, Imaizumi K, et al. Genetic polymorphism in the phenobarbital-responsive enhancer module of the UDP-glucuronosyltransferase 1A1 gene and irinotecan toxicity. Pharmacogenet Genomics. 2005;15(1):35–41.

    Article  CAS  Google Scholar 

  28. Xiang X, Jada SR, Li HH, Fan L, Tham LS, Wong CI, et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics. 2006;16(9):683–91.

    Article  CAS  Google Scholar 

  29. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, et al. Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer. 2008;59(1):69–75.

    Article  Google Scholar 

Download references

Funding

This study did not receive funding from any funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Fujii.

Ethics declarations

Conflict of interest

K Yoshida received grants, personal fees, and nonfinancial support from Chugai Pharmaceutical Co., Ltd. during the conduct of this study; grants and personal fees from Taiho Pharmaceutical Co., Ltd., Pfizer Inc., and Yakult Honsha Co., Ltd.; and grants from Bristol-Myers Squibb and Kyowa Hakko Kirin Co., Ltd. outside the submitted work. He also received honoraria from Taiho Pharmaceutical Co., Ltd., Pfizer Inc., Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., and Yakult Honsha Co., Ltd., and had a consultant or advisory relationship with Taiho Pharmaceutical Co., Ltd. and La Roche, Ltd. T. Takahashi has received honoraria for lectures from Takeda Pharmaceutical Co., Ltd. The other authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Fujii, H., Ohata, K. et al. High total bilirubin level is a significant risk factor for severe neutropenia in patients receiving irinotecan-based chemotherapy. Med Oncol 36, 63 (2019). https://doi.org/10.1007/s12032-019-1288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-019-1288-7

Keywords

Navigation