Skip to main content
Log in

Metastatic castration resistant prostate cancer with squamous cell, small cell, and sarcomatoid elements—a clinicopathologic and genomic sequencing-based discussion

  • Short Communication
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Histologic variants are uncommon but well reported amongst cases of prostatic adenocarcinoma, including those in the setting of hormonal and/or chemoradiation therapy and castration resistance. However, the spectrum of morphologic phenotypes and molecular alterations present in such histologic variants are still incompletely understood. Herein, we describe a case of metastatic prostatic adenocarcinoma with hormonal and chemoradiation therapy-associated differentiation, displaying a combination of squamous cell, small cell, and sarcomatoid elements. The morphologic, immunohistochemical, and molecular observations are discussed with attention given to the gene alterations present, including in TP53, NF1, AR, PTEN, and RB1. Finally, we will compare our findings with those observed in uncommonly reported similar cases so as to detail the molecular underpinnings of such processes which may carry therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Fine SW. Variants and unusual patterns of prostate cancer: clinicopathologic and differential diagnostic considerations. Adv Anat Pathol. 2012;19(4):204–16. https://doi.org/10.1097/PAP.0b013e31825c6b92.

    Article  PubMed  Google Scholar 

  2. Nabi G, Ansari MS, Singh I, Sharma MC, Dogra PN. Primary squamous cell carcinoma of the prostate: a rare clinicopathological entity: report of 2 cases and review of literature. Urol Int. 2001;66(4):216–9. https://doi.org/10.1159/000056618.

    Article  CAS  PubMed  Google Scholar 

  3. Hansel DE, Epstein JI. Sarcomatoid carcinoma of the prostate: a study of 42 cases. Am J Surg Pathol. 2006;30(10):1316–21. https://doi.org/10.1097/01.pas.0000209838.92842.bf.

    Article  PubMed  Google Scholar 

  4. Perez N, Castillo M, Santos Y, Truan D, Gutierrez R, Franco A, et al. Carcinosarcoma of the prostate: two cases with distinctive morphologic and immunohistochemical findings. Virchows Arch. 2005;446(5):511–6. https://doi.org/10.1007/s00428-005-1239-x.

    Article  PubMed  Google Scholar 

  5. Rogers CG, Parwani A, Tekes A, Schoenberg MP, Epstein JI. Carcinosarcoma of the prostate with urothelial and squamous components. J Urol. 2005;173(2):439–40. https://doi.org/10.1097/01.ju.0000149969.76999.7c.

    Article  PubMed  Google Scholar 

  6. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297–303. https://doi.org/10.1038/nature23306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Little NA, Wiener JS, Walther PJ, Paulson DF, Anderson EE. Squamous cell carcinoma of the prostate: 2 cases of a rare malignancy and review of the literature. J Urol. 1993;149(1):137–9.

    Article  CAS  Google Scholar 

  8. Cerasuolo M, Paris D, Iannotti FA, Melck D, Verde R, Mazzarella E, et al. Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res. 2015;75(15):2975–86. https://doi.org/10.1158/0008-5472.CAN-14-3830.

    Article  CAS  PubMed  Google Scholar 

  9. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355(6320):84–8. https://doi.org/10.1126/science.aah4307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ordonez NG, Ayala AG, von Eschenbach AC, Mackay B, Hanssen G. Immunoperoxidase localization of prostatic acid phosphatase in prostatic carcinoma with sarcomatoid changes. Urology. 1982;19(2):210–4.

    Article  CAS  Google Scholar 

  11. Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genom. 2017;11(1):13. https://doi.org/10.1186/s40246-017-0109-3.

    Article  CAS  Google Scholar 

  12. cBioPortal for Cancer Genomics [database on the Internet]. Accessed: October 2018.

  13. Kelly K, Balk SP. Reprogramming to resist. Science. 2017;355(6320):29–30. https://doi.org/10.1126/science.aam5355.

    Article  CAS  PubMed  Google Scholar 

  14. Millis SZ, Stephens PJ, Ross JS, Miller VA, Ali SM, Wang J. Comprehensive genomic sequencing of prostate sarcomatoid carcinoma tumors identifies differences in genomic alterations compared to prostate adenocarcinoma tumors. J Clin Oncol. 2017;35(6_suppl):226. https://doi.org/10.1200/JCO.2017.35.6_suppl.226.

    Article  Google Scholar 

  15. Vlachostergios PJ, Puca L, Beltran H. Emerging variants of castration-resistant prostate cancer. Curr Oncol Rep. 2017;19(5):32. https://doi.org/10.1007/s11912-017-0593-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Mehra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weindorf, S.C., Taylor, A.S., Kumar-Sinha, C. et al. Metastatic castration resistant prostate cancer with squamous cell, small cell, and sarcomatoid elements—a clinicopathologic and genomic sequencing-based discussion. Med Oncol 36, 27 (2019). https://doi.org/10.1007/s12032-019-1250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-019-1250-8

Keywords

Navigation