Medical Oncology

, 35:146 | Cite as

Hypofractionated stereotactic radiotherapy for oligometastatic patients: developing of a response predictive model

  • Barbara DilettoEmail author
  • Nicola Dinapoli
  • Silvia Chiesa
  • Gian Carlo Mattiucci
  • Vincenzo Frascino
  • Carmelo Anile
  • Cesare Colosimo
  • Vincenzo Valentini
  • Mario Balducci
Original Paper



Treatment of oligometastatic patients is a current challenge in radiation oncology. Aim of this study is to define a dose–response relationship for hypofractionated radiotherapy of oligometastases.


Retrospective analysis of metastases treated by hypofractionated stereotactic radiotherapy was performed. Delivered dose was calculated both as biological effective dose (BED10), and as ratio between BED10 and the logarithm of metastasis volume (BED10 logVolume Ratio, BVR). Two dose–response models were defined by logistic regression. The fitted outcome was the Metastases Complete Response (MCR). Performances of the models were assessed by area under the receiver operating curve (AUC) and by bootstrap calibration of original data. BED10 and BVR impact on survival outcomes has been evaluated.


Fifty-three patients with 79 metastases were analyzed. AUC and calibration of BVR-based logistic model showed better accuracy in predicting MCR with respect to BED10-based model. No significant difference between the two ROCs was observed (De Long test p value > 0.05), but significant discordance in calibration resulted in the BED10 model (p value < 0.05 in Hosmer–Lemeshow Goodness of fit test). BVR returned also better results in multivariate analyses for survival outcomes.


The ratio between BED10 and the logarithm of metastasis volume (BVR), as a corrective factor for fitting the probability of metastases response to stereotactic radiotherapy, could be a tool for evaluating and prescribing treatments for oligometastatic disease. BVR can be useful for producing more reliable survival statistics too.


Stereotactic radiotherapy Oligometastases Dose–response model Tumor response Hypofractionation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

For this study, institutional review and patient informed consent were not required.


  1. 1.
    Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8:378–82.CrossRefGoogle Scholar
  2. 2.
    Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson L, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59:145–70.CrossRefGoogle Scholar
  3. 3.
    Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.CrossRefGoogle Scholar
  4. 4.
    Mehta N, Mauer AM, Hellman S, Haraf DJ, Cohen EEW, Vokes EE, et al. Analysis of further disease progression in metastatic non-small cell lung cancer: implications for locoregional treatment. Int J Oncol. 2004;25:1677–83.PubMedGoogle Scholar
  5. 5.
    Hellman S, Weichselbaum RR. Importance of local control in an era of systemic therapy. Nat Clin Pract Oncol. 2005;2:60–71.CrossRefGoogle Scholar
  6. 6.
    Milano MT, Katz AW, Muhs AG, Philip A, Buchholz DJ, Schell MC, et al. A prospective pilot study of curative-intent stereotactic body radiation therapy in patients with 5 or fewer oligometastatic lesions. Cancer. 2008;112:650–8.CrossRefGoogle Scholar
  7. 7.
    Milano MT, Katz AW, Schell MC, Philip A, Okunieff P. Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:1516–22.CrossRefGoogle Scholar
  8. 8.
    Milano MT, Philip A, Okunieff P. Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int J Radiat Oncol Biol Phys. 2009;73:832–7.CrossRefGoogle Scholar
  9. 9.
    Katz AW, Carey-Sampson M, Muhs AG, Milano MT, Schell MC, Okunieff P. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol. 2007;67:793–8.CrossRefGoogle Scholar
  10. 10.
    Norihisa Y, Nagata Y, Takayama K, Matsuo Y, Sakamoto T, Sakamoto M, et al. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors. Int J Radiat Oncol Biol Phys. 2008;72:398–403.CrossRefGoogle Scholar
  11. 11.
    Thames HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982;8:219–26.CrossRefGoogle Scholar
  12. 12.
    Wulf J, Baier K, Mueller G, Flentje MP. Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol. 2005;77:83–7.CrossRefGoogle Scholar
  13. 13.
    Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G, Flentje M. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys. 2004;60:186–96.CrossRefGoogle Scholar
  14. 14.
    Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K, et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol (Madr). 2006;45:838–47.CrossRefGoogle Scholar
  15. 15.
    Koshy M, Malik R, Weichselbaum RR, Sher DJ. Increasing radiation therapy dose is associated with improved survival in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2015;91:344–50.CrossRefGoogle Scholar
  16. 16.
    McCammon R, Schefter TE, Gaspar LE, Zaemisch R, Gravdahl D, Kavanagh B. Observation of a Dose-Control Relationship for Lung and Liver Tumors After Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2009;73:112–8.CrossRefGoogle Scholar
  17. 17.
    Greco C, Zelefsky MJ, Lovelock M, Fuks Z, Hunt M, Rosenzweig K, et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int J Radiat Oncol. 2011;79:1151–7.CrossRefGoogle Scholar
  18. 18.
    Shiau CY, Sneed PK, Shu HKG, Lamborn KR, McDermott MW, Chang S, et al. Radiosurgery for brain metastases: Relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys. 1997;37:375–83.CrossRefGoogle Scholar
  19. 19.
    de Azevedo Santos T, Tundisi C, Ramos H, Maia M, Pellizzon A, Silva M, et al. Local control after radiosurgery for brain metastases: predictive factors and implications for clinical decision. Radiat Oncol. 2015;10:63.CrossRefGoogle Scholar
  20. 20.
    ICRU. ICRU 83: 3. Special Considerations Regarding Absorbed-Dose and Dose-Volume Prescribing and Reporting in IMRT. J ICRU. 2010;10:27–40.Google Scholar
  21. 21.
    Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.CrossRefGoogle Scholar
  22. 22.
    Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M, et al. Dose-Response Relationship for Image-Guided Stereotactic Body Radiotherapy of Pulmonary Tumors: Relevance of 4D Dose Calculation. Int J Radiat Oncol Biol Phys. 2009;74:47–54.CrossRefGoogle Scholar
  23. 23.
    R Core Team. R: A Language and Environment for Statistical Computing 2015. R Foundation for Statistical Computing. Vienna, Austria, url:
  24. 24.
    Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefGoogle Scholar
  25. 25.
    Dubben HH, Thames HD, Beck-Bornholdt HP. Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol. 1998;47:167–74.CrossRefGoogle Scholar
  26. 26.
    Bentzen SM, Thames HD. Tumor volume and local control probability: clinical data and radiobiological interpretations. Int J Radiat Oncol Biol Phys. 1996;36:247–51.CrossRefGoogle Scholar
  27. 27.
    Broström G, Holmberg H. Generalized linear models with clustered data: Fixed and random effects models. Comput Stat Data Anal. 2011;55:3123–34.CrossRefGoogle Scholar
  28. 28.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefGoogle Scholar
  29. 29.
    Harrell FEJ. Resampling,validating, describing, and simplifying the model. In: Harrell FEJ, editor. Regres Model Strateg. New York: Springer-Verlag; 2001. pp. 87–103.CrossRefGoogle Scholar
  30. 30.
    Harrell FEJ. Multivariable Modeling Strategies. In: Harrell FEJ, editor. Regres. Model. Strateg. New York: Springer-Verlag; 2001. pp. 53–85.CrossRefGoogle Scholar
  31. 31.
    Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26:1364–70.CrossRefGoogle Scholar
  32. 32.
    Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRefGoogle Scholar
  33. 33.
    Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. New York: Springer; 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Barbara Diletto
    • 1
    • 4
    Email author
  • Nicola Dinapoli
    • 1
  • Silvia Chiesa
    • 1
  • Gian Carlo Mattiucci
    • 1
  • Vincenzo Frascino
    • 1
  • Carmelo Anile
    • 2
  • Cesare Colosimo
    • 3
  • Vincenzo Valentini
    • 1
  • Mario Balducci
    • 1
  1. 1.Department of Radiation OncologyUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Department of NeurosurgeryUniversità Cattolica del Sacro CuoreRomeItaly
  3. 3.Department of RadiologyUniversità Cattolica del Sacro CuoreRomeItaly
  4. 4.Department of Radiation OncologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly

Personalised recommendations