Advertisement

Medical Oncology

, 35:104 | Cite as

Tumor budding and human chorionic gonadotropin-β expression correlate with unfavorable patient outcome in colorectal carcinoma

  • Yuji Konishi
  • Futoshi Kawamata
  • Hiroshi Nishihara
  • Shigenori Homma
  • Yasutaka Kato
  • Masumi Tsuda
  • Shinji Kohsaka
  • Takahiro Einama
  • Cheng Liu
  • Tadashi Yoshida
  • Akihisa Nagatsu
  • Mishie Tanino
  • Shinya Tanaka
  • Hideki Kawamura
  • Toshiya Kamiyama
  • Akinobu Taketomi
Original Paper
  • 13 Downloads

Abstract

Tumor budding is thought to represent a manifestation of epithelial-to-mesenchymal transition (EMT) and it has been correlated with poor patient outcomes in colorectal cancer (CRC). Our group recently demonstrated that human chorionic gonadotropin-β (hCGβ) modulates EMT in CRC. In the current study, based on the likely relationships between tumor budding and hCGβ expression, we examined their clinicopathologic significance in CRC. Twenty-eight of 80 (35.0%) CRC showed tumor budding. Tumor budding significantly correlated with lymph node metastasis (P < 0.01), pathologic stage (P < 0.01), lymphatic invasion (P = 0.044), and vascular invasion (P = 0.013). Thirteen of 80 (16.3%) CRC were hCGβ positive on immunohistochemistry. More tumor buds were present in the hCGβ-positive cases (P < 0.01), and tumor budding was significantly correlated with hCGβ positivity (P < 0.01). Cases with both tumor budding and hCGβ expression had the poorest prognosis compared with all other groups (P < 0.01). In conclusion, tumor budding and hCGβ expression are closely associated with EMT, and they are independent prognostic factors in CRC. They identify patients with an “EMT phenotype” who may respond to targeted molecular therapies.

Keywords

Tumor budding Human chorionic gonadotropin Colorectal cancer Epithelial-to-mesenchymal transition Prognostic factor 

Notes

Acknowledgements

We thank the members of the Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standard of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Mitrovic B, Schaeffer DF, Riddell RH, Kirsch R. Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol. 2012;25(10):1315–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer. 2012;106(11):1713–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ueno H, Price AB, Wilkinson KH, Jass JR, Mochizuki H, Talbot IC. A new prognostic staging system for rectal cancer. Ann Surg. 2004;240(5):832–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Okuyama T, Oya M, Ishikawa H. Budding as a risk factor for lymph node metastasis in pT1 or pT2 well-differentiated colorectal adenocarcinoma. Dis Colon Rectum. 2002;45(5):628 – 34.CrossRefPubMedGoogle Scholar
  6. 6.
    Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36(7):627 – 35.CrossRefPubMedGoogle Scholar
  7. 7.
    Ueno H, Mochizuki H, Shinto E, Hashiguchi Y, Hase K, Talbot IC. Histologic indices in biopsy specimens for estimating the probability of extended local spread in patients with rectal carcinoma. Cancer. 2002;94(11):2882–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, et al. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer. Oncotarget. 2016;7(48):78932–45.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488 – 94.CrossRefPubMedGoogle Scholar
  10. 10.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Galvan JA, Helbling M, Koelzer VH, Tschan MP, Berger MD, Hadrich M, et al. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget. 2015;6(2):874 – 85.CrossRefPubMedGoogle Scholar
  12. 12.
    Zlobec I, Lugli A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1(7):651–61.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Cole LA. hCG, the wonder of today’s science. Reprod Biol Endocrinol. 2012;10:24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lundin M, Nordling S, Lundin J, Alfthan H, Stenman UH, Haglund C. Tissue expression of human chorionic gonadotropin beta predicts outcome in colorectal cancer: a comparison with serum expression. Int J Cancer. 2001;95(1):18–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Louhimo J, Kokkola A, Alfthan H, Stenman UH, Haglund C. Preoperative hCGbeta and CA 72-4 are prognostic factors in gastric cancer. Int J Cancer. 2004;111(6):929–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Louhimo J, Alfthan H, Stenman UH, Haglund C. Serum HCG beta and CA 72-4 are stronger prognostic factors than CEA, CA 19-9 and CA 242 in pancreatic cancer. Oncology. 2004;66(2):126–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Butler SA, Ikram MS, Mathieu S, Iles RK. The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br J Cancer. 2000;82(9):1553–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369(6480):455–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Kawamata F, Nishihara H, Homma S, Kato Y, Tsuda M, Konishi Y, et al. Chorionic Gonadotropin-beta Modulates Epithelial-Mesenchymal Transition in Colorectal Carcinoma Metastasis. Am J Pathol. 2018;188(1):204–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Sobin LH, Compton CC. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer. 2010;116(22):5336–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40(2):127–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Oh BY, Park YA, Huh JW, Yun SH, Kim HC, Chun HK, et al. Prognostic impact of tumor-budding grade in stages 1–3 colon cancer: a retrospective cohort study. Ann Surg Oncol. 2018;25(1):204 – 11.CrossRefPubMedGoogle Scholar
  23. 23.
    Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 2017;28(8):1713–29.CrossRefPubMedGoogle Scholar
  24. 24.
    Kuramochi H, Nakamura A, Nakajima G, Kaneko Y, Araida T, Yamamoto M, et al. PTEN mRNA expression is less pronounced in left- than right-sided colon cancer: a retrospective observational study. BMC Cancer. 2016;16:366.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–311.CrossRefGoogle Scholar
  26. 26.
    Horst D, Budczies J, Brabletz T, Kirchner T, Hlubek F. Invasion associated up-regulation of nuclear factor kappaB target genes in colorectal cancer. Cancer. 2009;115(21):4946–58.CrossRefPubMedGoogle Scholar
  27. 27.
    Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, Kirchner T. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer. 2007;121(9):1941–8.CrossRefPubMedGoogle Scholar
  28. 28.
    De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D, et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer. 2017;116(1):58–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Zlobec I, Molinari F, Martin V, Mazzucchelli L, Saletti P, Trezzi R, et al. Tumor budding predicts response to anti-EGFR therapies in metastatic colorectal cancer patients. World J Gastroenterol. 2010;16(38):4823–31.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8(7):2044–51.PubMedGoogle Scholar
  31. 31.
    Berndt S, Blacher S, Munaut C, Detilleux J, Perrier d’Hauterive S, Huhtaniemi I, et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-beta receptor activation. FASEB J. 2013;27(4):1309–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Gulubova M, Manolova I, Ananiev J, Julianov A, Yovchev Y, Peeva K. Role of TGF-beta1, its receptor TGFbetaRII, and Smad proteins in the progression of colorectal cancer. Int J Colorectal Dis. 2010;25(5):591–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J. Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. J Biol Chem. 2011;286(18):16082–90.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lehnert SA, Akhurst RJ. Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development. 1988;104(2):263 – 73.PubMedGoogle Scholar
  35. 35.
    Fujii D, Brissenden JE, Derynck R, Francke U. Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet. 1986;12(3):281–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuji Konishi
    • 1
  • Futoshi Kawamata
    • 1
  • Hiroshi Nishihara
    • 2
  • Shigenori Homma
    • 1
  • Yasutaka Kato
    • 2
  • Masumi Tsuda
    • 3
  • Shinji Kohsaka
    • 4
  • Takahiro Einama
    • 1
  • Cheng Liu
    • 5
  • Tadashi Yoshida
    • 1
  • Akihisa Nagatsu
    • 1
  • Mishie Tanino
    • 3
  • Shinya Tanaka
    • 3
  • Hideki Kawamura
    • 1
  • Toshiya Kamiyama
    • 1
  • Akinobu Taketomi
    • 1
  1. 1.Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
  2. 2.Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
  3. 3.Department of Cancer PathologyHokkaido University Graduate School of MedicineSapporoJapan
  4. 4.Department of Cellular Signaling, Graduate School of MedicineUniversity of TokyoTokyoJapan
  5. 5.Conjoint Gastroenterology LaboratoryQIMR Berghofer Medical Research InstituteBrisbaneAustralia

Personalised recommendations