Skip to main content

Advertisement

Log in

The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Immunotherapy plays an important role in cancer treatment. Biomarkers that can predict response, including tumor-infiltrating lymphocytes (TILs), are in the spotlight of many studies. This cohort study was designed to evaluate the role of CD4+ and CD8+ TILs as predictive factors for response to anti PD-1 treatment in patients with metastatic non-small cell lung cancer (NSCLC) or metastatic melanoma. We evaluated the expression of CD4+ and CD8+ TILs in tissue samples of 56 patients with metastatic NSCLC or melanoma treated with anti-PD1 immunotherapy. The study included 30 patients with melanoma and 26 with NSCLC. An association was found between CD8+/CD4+ TILs ratio and response to anti-PD1 treatment in both cancers. Regarding melanoma patients, ratios of CD8+/CD4+ lower than 2 predicted lack of response to treatment (0%) (p = 0.006), while CD8+/CD4+ ratios higher than 2.7 had an 81.3% response rate (p = 0.0001). In addition, we found that the presence of more than 1900/mm2 of CD8+ lymphocytes in the melanoma tumor predicted a 90% response to therapy. In the metastatic NSCLC group, tumors with CD8+ lymphocyte count under 886/mm2 showed low response rates (16.7%, p = 0.046). When the CD8+ lymphocyte count was in the range of 886-1899/mm2, the response rate was high (60%, p = 0.017). In CD8+/CD4+ ratios lower than 2, the response rate was low (13.3%), and in ratios higher than 2, response rates ranged between 43 and 50% (p = 0.035). The use of CD8+/CD4+ TILs ratios in tumor biopsies may predict response to anti-PD1 treatment in metastatic melanoma and NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 2010;29:309–16. https://doi.org/10.1007/s10555-010-9223-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103. https://doi.org/10.1038/bjc.2011.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ladányi A, Somlai B, Gilde K, Fejös Z, Gaudi I, Tímár J. T-Cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. Clin Cancer Res. 2004;10:521–30.

    Article  PubMed  Google Scholar 

  4. Rao UN, Lee SJ, Luo W, Mihm MC Jr, Kirkwood JM. Presence of tumor-infiltrating lymphocytes and a dominant nodule within primary melanoma are prognostic factors for relapse-free survival of patients with thick (t4) primary melanoma: pathologic analysis of the e1690 and e1694 intergroup trials. Am J Clin Pathol. 2010;133:646–53. https://doi.org/10.1309/AJCPTXMEFOVYWDA6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14:5220–7. https://doi.org/10.1158/1078-0432.CCR-08-0133.

    Article  CAS  PubMed  Google Scholar 

  6. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV non-small cell lung cancer. Cancer. 2008;113:1387–95. https://doi.org/10.1002/cncr.23712.

    Article  CAS  PubMed  Google Scholar 

  7. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006;94:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schalper KA, Brown J, Carvajal-Hausdorf D, McLaughlin J, Velcheti V, Syrigos KN, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst. 2015. https://doi.org/10.1093/jnci/dju435.

    Google Scholar 

  9. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF Mutation. N Engl J Med. 2015;372:320–30. https://doi.org/10.1056/NEJMoa1412082.

    Article  CAS  PubMed  Google Scholar 

  10. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017;116:116–24. https://doi.org/10.1016/j.critrevonc.2017.06.001.

    Article  PubMed  Google Scholar 

  13. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010). Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  15. Hui R, Gandhi L, Carcereny E, Felip E, Ahn MJ, Eder JP, et al. Long-term OS for patients with advanced NSCLC enrolled in the KEYNOTE-001 study of pembrolizumab (pembro). J Clin Oncol. 2016;11:S241–2. https://doi.org/10.1016/j.jtho.2016.08.110.

    Google Scholar 

  16. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  17. Swaika A, Hammond WA, Joseph RW. Current state of anti-PD-L1 andanti-PD-1 agents in cancer therapy. Mol Immunol. 2015;67(2 Pt A):4–17. https://doi.org/10.1016/j.molimm.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  18. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74. https://doi.org/10.1158/1078-0432.CCR-13-3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71. https://doi.org/10.1038/nature13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18. https://doi.org/10.1016/S1470-2045(15)00083-2.

    Article  CAS  PubMed  Google Scholar 

  21. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32. https://doi.org/10.1056/NEJMoa1503093.

    Article  CAS  PubMed  Google Scholar 

  22. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  23. Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde N, Jansen P, et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 2014;4:674–87. https://doi.org/10.1158/2159-8290.CD-13-0458.

    Article  CAS  PubMed  Google Scholar 

  24. Santarpia M, Karachaliou N. Tumor immune microenvironment characterization and response to anti-PD-1 therapy. Cancer Biol Med. 2015;12:74–8. https://doi.org/10.7497/j.issn.2095-3941.2015.0022.

    PubMed  PubMed Central  Google Scholar 

  25. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41:868–76. https://doi.org/10.1016/j.ctrv.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  26. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21:462–73. https://doi.org/10.1007/s10147-016-0959-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116. https://doi.org/10.1126/scitranslmed.3006504.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zakharia Y, Drabick JJ, Khleif S, McWilliams RR, et al. Updates on phase 1b/2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus checkpoint inhibitors for the treatment of unresectable stage 3 or 4 melanoma. J Clin Oncol. 2016;34:suppl; abstr 3075. Status—Recruiting, Phase of Trial: Phase I/II Latest Information Update: 07 Sep 2017.

  29. Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, et al. T cell Bim levels reflect responses to anti-PD-1 cancer therapy. JCI Insight. 2016;1:e86014. https://doi.org/10.1172/jci.insight.86014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Supported in full by a research grant from Investigator-Initiated Studies Program of Merck Sharp & Dohme (Israel-1996) Company Ltd. The opinions expressed in this paper are those of the authors and do not necessarily represent those of Merck Sharp & Dohme (Israel-1996) Company Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Bar-Sela.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryvaev, A., Passhak, M., Hershkovits, D. et al. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med Oncol 35, 25 (2018). https://doi.org/10.1007/s12032-018-1080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1080-0

Keywords

Navigation