Advertisement

Medical Oncology

, 35:16 | Cite as

Genetic polymorphisms associated with adverse reactions of molecular-targeted therapies in renal cell carcinoma

  • Kazuhiro YamamotoEmail author
  • Ikuko Yano
Review Article
  • 235 Downloads

Abstract

The prognosis of patients with metastatic renal cell carcinoma has drastically improved due to the development of molecular-targeted drugs and their use in clinical practice. However, these drugs cause some diverse adverse reactions in patients and sometimes affect clinical outcomes of cancer therapy. Therefore, predictive markers are necessary to avoid severe adverse reactions, to establish novel and effective prevention methods, and to improve treatment outcomes. Some genetic factors involved in these adverse reactions have been reported; however, perspectives on each adverse response have not been integrated yet. In this review, genetic polymorphisms relating to molecular-targeted therapy-induced adverse reactions in patients with renal cell carcinoma are summarized in the points of pharmacokinetic and pharmacodynamic mechanisms. We also discuss about the relationship between systemic drug exposure and adverse drug reactions.

Keywords

Adverse drug reaction Molecular-targeted drug Polymorphism Renal cell carcinoma Pharmacokinetics Pharmacodynamics 

Notes

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for the English language review.

Compliance with ethical standards

Conflict of interest

The authors declared no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by the authors.

References

  1. 1.
    Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67(6):507–24.  https://doi.org/10.3322/caac.21411.CrossRefPubMedGoogle Scholar
  2. 2.
    Sanchez-Gastaldo A, Kempf E, Gonzalez Del Alba A, Duran I. Systemic treatment of renal cell cancer: a comprehensive review. Cancer Treat Rev. 2017;60:77–89.  https://doi.org/10.1016/j.ctrv.2017.08.010.CrossRefPubMedGoogle Scholar
  3. 3.
    Li Y, Gao ZH, Qu XJ. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol. 2015;116(3):216–21.  https://doi.org/10.1111/bcpt.12365.CrossRefPubMedGoogle Scholar
  4. 4.
    Frampton JE. Pazopanib: a review in advanced renal cell carcinoma. Targeted Oncol. 2017;12(4):543–54.  https://doi.org/10.1007/s11523-017-0511-8.CrossRefGoogle Scholar
  5. 5.
    Cohen RB, Oudard S. Antiangiogenic therapy for advanced renal cell carcinoma: management of treatment-related toxicities. Invest New Drugs. 2012;30(5):2066–79.  https://doi.org/10.1007/s10637-012-9796-8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Josephs DH, Fisher DS, Spicer J, Flanagan RJ. Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit. 2013;35(5):562–87.  https://doi.org/10.1097/FTD.0b013e318292b931.PubMedGoogle Scholar
  7. 7.
    Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of membrane drug transporters on resistance to small-molecule tyrosine kinase inhibitors. Trends Pharmacol Sci. 2016;37(11):904–32.  https://doi.org/10.1016/j.tips.2016.08.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Vaziri SA, Kim J, Ganapathi MK, Ganapathi R. Vascular endothelial growth factor polymorphisms: role in response and toxicity of tyrosine kinase inhibitors. Current Oncol Rep. 2010;12(2):102–8.  https://doi.org/10.1007/s11912-010-0085-4.CrossRefGoogle Scholar
  9. 9.
    Song M. Recent developments in small molecule therapies for renal cell carcinoma. Eur J Med Chem. 2017.  https://doi.org/10.1016/j.ejmech.2017.08.007.Google Scholar
  10. 10.
    Subramanian P, Haas Md NB. Recent advances in localized RCC: a focus on VEGF and immuno-oncology therapies. Urol Oncol. 2017.  https://doi.org/10.1016/j.urolonc.2017.09.008.PubMedGoogle Scholar
  11. 11.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. New Engl J Med. 2007;356(2):125–34.  https://doi.org/10.1056/NEJMoa060655.CrossRefPubMedGoogle Scholar
  12. 12.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(22):3584–90.  https://doi.org/10.1200/jco.2008.20.1293.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hutson TE, Lesovoy V, Al-Shukri S, Stus VP, Lipatov ON, Bair AH, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol. 2013;14(13):1287–94.  https://doi.org/10.1016/s1470-2045(13)70465-0.CrossRefPubMedGoogle Scholar
  14. 14.
    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in Locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8.  https://doi.org/10.1200/jco.2009.23.9764.CrossRefPubMedGoogle Scholar
  15. 15.
    Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet (Lond, Engl). 2008;372(9637):449–56.  https://doi.org/10.1016/s0140-6736(08)61039-9.CrossRefGoogle Scholar
  16. 16.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New Engl J Med. 2007;356(22):2271–81.  https://doi.org/10.1056/NEJMoa066838.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee SH, Bang YJ, Mainwaring P, Ng C, Chang JW, Kwong P, et al. Sunitinib in metastatic renal cell carcinoma: an ethnic Asian subpopulation analysis for safety and efficacy. Asia Pac J Clin Oncol. 2014;10(3):237–45.  https://doi.org/10.1111/ajco.12163.CrossRefPubMedGoogle Scholar
  18. 18.
    Poprach A, Pavlik T, Melichar B, Puzanov I, Dusek L, Bortlicek Z, et al. Skin toxicity and efficacy of sunitinib and sorafenib in metastatic renal cell carcinoma: a national registry-based study. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2012;23(12):3137–43.  https://doi.org/10.1093/annonc/mds145.CrossRefGoogle Scholar
  19. 19.
    Rautiola J, Donskov F, Peltola K, Joensuu H, Bono P. Sunitinib-induced hypertension, neutropaenia and thrombocytopaenia as predictors of good prognosis in patients with metastatic renal cell carcinoma. BJU Int. 2014.  https://doi.org/10.1111/bju.12940.Google Scholar
  20. 20.
    Willemsen AE, Grutters JC, Gerritsen WR, van Erp NP, van Herpen CM, Tol J. mTOR inhibitor-induced interstitial lung disease in cancer patients: comprehensive review and a practical management algorithm. Int J Cancer J Int Cancer. 2016;138(10):2312–21.  https://doi.org/10.1002/ijc.29887.CrossRefGoogle Scholar
  21. 21.
    Tsukamoto T, Shinohara N, Tsuchiya N, Hamamoto Y, Maruoka M, Fujimoto H, et al. Phase III trial of everolimus in metastatic renal cell carcinoma: subgroup analysis of Japanese patients from RECORD-1. Jpn J Clin Oncol. 2011;41(1):17–24.  https://doi.org/10.1093/jjco/hyq166.CrossRefPubMedGoogle Scholar
  22. 22.
    Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, et al. Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer. 2014;21(6):703–14.  https://doi.org/10.1007/s12282-013-0444-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Atkinson BJ, Cauley DH, Ng C, Millikan RE, Xiao L, Corn P, et al. Mammalian target of rapamycin (mTOR) inhibitor-associated non-infectious pneumonitis in patients with renal cell cancer: predictors, management, and outcomes. BJU Int. 2014;113(3):376–82.  https://doi.org/10.1111/bju.12420.CrossRefPubMedGoogle Scholar
  24. 24.
    Penttila P, Donskov F, Rautiola J, Peltola K, Laukka M, Bono P. Everolimus-induced pneumonitis associates with favourable outcome in patients with metastatic renal cell carcinoma. Eur J Cancer. 2017;81:9–16.  https://doi.org/10.1016/j.ejca.2017.05.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Conteduca V, Santoni M, Medri M, Scarpi E, Burattini L, Lolli C, et al. Correlation of stomatitis and cutaneous toxicity with clinical outcome in patients with metastatic renal-cell carcinoma treated with everolimus. Clin Genitourin Cancer. 2016;14(5):426–31.  https://doi.org/10.1016/j.clgc.2016.02.012.CrossRefPubMedGoogle Scholar
  26. 26.
    Chu YH, Li H, Tan HS, Koh V, Lai J, Phyo WM, et al. Association of ABCB1 and FLT3 polymorphisms with toxicities and survival in Asian patients receiving sunitinib for renal cell carcinoma. PLoS ONE. 2015;10(8):e0134102.  https://doi.org/10.1371/journal.pone.0134102.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Diekstra MH, Klumpen HJ, Lolkema MP, Yu H, Kloth JS, Gelderblom H, et al. Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin Pharmacol Ther. 2014;96(1):81–9.  https://doi.org/10.1038/clpt.2014.47.CrossRefPubMedGoogle Scholar
  28. 28.
    Boudou-Rouquette P, Narjoz C, Golmard JL, Thomas-Schoemann A, Mir O, Taieb F, et al. Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS ONE. 2012;7(8):e42875.  https://doi.org/10.1371/journal.pone.0042875.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bins S, Lenting A, El Bouazzaoui S, van Doorn L, Oomen-de Hoop E, Eskens FA, et al. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics. 2016;17(14):1483–90.  https://doi.org/10.2217/pgs-2016-0063.CrossRefPubMedGoogle Scholar
  30. 30.
    Suttle AB, Ball HA, Molimard M, Hutson TE, Carpenter C, Rajagopalan D, et al. Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br J Cancer. 2014;111(10):1909–16.  https://doi.org/10.1038/bjc.2014.503.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AK, Mathijssen RH, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27(26):4406–12.  https://doi.org/10.1200/JCO.2008.21.7679.CrossRefPubMedGoogle Scholar
  32. 32.
    Numakura K, Tsuchiya N, Kagaya H, Takahashi M, Tsuruta H, Inoue T, et al. Clinical effects of single nucleotide polymorphisms on drug-related genes in Japanese metastatic renal cell carcinoma patients treated with sunitinib. Anticancer Drugs. 2017;28(1):97–103.  https://doi.org/10.1097/cad.0000000000000425.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim HR, Park HS, Kwon WS, Lee JH, Tanigawara Y, Lim SM, et al. Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother Pharmacol. 2013;72(4):825–35.  https://doi.org/10.1007/s00280-013-2258-y.CrossRefPubMedGoogle Scholar
  34. 34.
    Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27(6):631–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Noda S, Otsuji T, Baba M, Yoshida T, Kageyama S, Okamoto K, et al. Assessment of sunitinib-induced toxicities and clinical outcomes based on therapeutic drug monitoring of sunitinib for patients with renal cell carcinoma. Clin Genitourin Cancer. 2015;13(4):350–8.  https://doi.org/10.1016/j.clgc.2015.01.007.CrossRefPubMedGoogle Scholar
  36. 36.
    Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S, et al. Exposure-toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet. 2014;53(2):185–96.  https://doi.org/10.1007/s40262-013-0108-z.CrossRefPubMedGoogle Scholar
  37. 37.
    Mai H, Huang J, Zhang Y, Qu N, Qu H, Mei GH, et al. In-vivo relation between plasma concentration of sorafenib and its safety in Chinese patients with metastatic renal cell carcinoma: a single-center clinical study. Oncotarget. 2017;8(26):43458–69.  https://doi.org/10.18632/oncotarget.16465.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee JH, Chung YH, Kim JA, Shim JH, Lee D, Lee HC, et al. Genetic predisposition of hand-foot skin reaction after sorafenib therapy in patients with hepatocellular carcinoma. Cancer. 2013;119(1):136–42.  https://doi.org/10.1002/cncr.27705.CrossRefPubMedGoogle Scholar
  39. 39.
    Peer CJ, Sissung TM, Kim A, Jain L, Woo S, Gardner ER, et al. Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin Cancer Res. 2012;18(7):2099–107.  https://doi.org/10.1158/1078-0432.CCR-11-2484.CrossRefPubMedGoogle Scholar
  40. 40.
    Jain L, Sissung TM, Danesi R, Kohn EC, Dahut WL, Kummar S, et al. Hypertension and hand-foot skin reactions related to VEGFR2 genotype and improved clinical outcome following bevacizumab and sorafenib. J Exp Clin Cancer Res CR. 2010;29:95.  https://doi.org/10.1186/1756-9966-29-95.CrossRefPubMedGoogle Scholar
  41. 41.
    Diekstra MH, Swen JJ, Boven E, Castellano D, Gelderblom H, Mathijssen RH, et al. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur Urol. 2015;68(4):621–9.  https://doi.org/10.1016/j.eururo.2015.04.018.CrossRefPubMedGoogle Scholar
  42. 42.
    Qin C, Cao Q, Li P, Wang S, Wang J, Wang M, et al. The influence of genetic variants of sorafenib on clinical outcomes and toxic effects in patients with advanced renal cell carcinoma. Sci Rep. 2016;6:20089.  https://doi.org/10.1038/srep20089.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang J, Yang J, Chen Y, Mao Q, Li S, Xiong W, et al. Genetic variants of VEGF (rs201963 and rs3025039) and KDR (rs7667298, rs2305948, and rs1870377) are associated with Glioma Risk in a Han Chinese population: a case-control study. Mol Neurobiol. 2016;53(4):2610–8.  https://doi.org/10.1007/s12035-015-9240-0.CrossRefPubMedGoogle Scholar
  44. 44.
    Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998;18(11):6178–90.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang Y, Zheng Y, Zhang W, Yu H, Lou K, Zhang Y, et al. Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol. 2007;50(8):760–7.  https://doi.org/10.1016/j.jacc.2007.04.074.CrossRefPubMedGoogle Scholar
  46. 46.
    Yamamoto K, Shinomiya K, Ioroi T, Hirata S, Harada K, Suno M, et al. Association of single nucleotide polymorphisms in STAT3 with hand-foot skin reactions in patients with metastatic renal cell carcinoma treated with multiple tyrosine kinase inhibitors: a retrospective analysis in Japanese patients. Targ Oncol. 2016;11(1):93–9.  https://doi.org/10.1007/s11523-015-0382-9.CrossRefGoogle Scholar
  47. 47.
    Tsuchiya N, Narita S, Inoue T, Hasunuma N, Numakura K, Horikawa Y, et al. Risk factors for sorafenib-induced high-grade skin rash in Japanese patients with advanced renal cell carcinoma. Anticancer Drugs. 2013;24(3):310–4.  https://doi.org/10.1097/CAD.0b013e32835c401c.CrossRefPubMedGoogle Scholar
  48. 48.
    Franke RM, Lancaster CS, Peer CJ, Gibson AA, Kosloske AM, Orwick SJ, et al. Effect of ABCC2 (MRP2) transport function on erythromycin metabolism. Clin Pharmacol Ther. 2011;89(5):693–701.  https://doi.org/10.1038/clpt.2011.25.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu Y, Yin Y, Sheng Q, Lu X, Wang F, Lin Z, et al. Association of ABCC2 -24C > T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS ONE. 2014;9(1):e82681.  https://doi.org/10.1371/journal.pone.0082681.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(19):6062–9.  https://doi.org/10.1158/1078-0432.CCR-09-0048.CrossRefGoogle Scholar
  51. 51.
    Tirona RG, Lee W, Leake BF, Lan LB, Cline CB, Lamba V, et al. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med. 2003;9(2):220–4.  https://doi.org/10.1038/nm815.CrossRefPubMedGoogle Scholar
  52. 52.
    Bartnicka L, Kurzawski M, Drozdzik A, Plonska-Gosciniak E, Gornik W, Drozdzik M. Effect of ABCB1 (MDR1) 3435C > T and 2677G > A, T polymorphisms and P-glycoprotein inhibitors on salivary digoxin secretion in congestive heart failure patients. Pharmacol Rep PR. 2007;59(3):323–9.PubMedGoogle Scholar
  53. 53.
    Huber JC, Schneeberger C, Tempfer CB. Genetic modeling of estrogen metabolism as a risk factor of hormone-dependent disorders. Maturitas. 2002;41(Suppl 1):S55–64.CrossRefPubMedGoogle Scholar
  54. 54.
    Lakkireddy S, Aula S, Avn S, Kapley A, Rao Digumarti R, Jamil K. Association of the common CYP1A1*2C Variant (Ile462Val polymorphism) with chronic myeloid leukemia (CML) in patients undergoing imatinib therapy. Cell J. 2015;17(3):510–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Watanabe A, Yamamoto K, Ioroi T, Hirata S, Harada K, Miyake H, et al. Association of single nucleotide polymorphisms in STAT3, ABCB1, and ABCG2 with stomatitis in patients with metastatic renal cell carcinoma treated with sunitinib: a retrospective analysis in Japanese patients. Biol Pharm Bull. 2017;40(4):458–64.  https://doi.org/10.1248/bpb.b16-00875.CrossRefPubMedGoogle Scholar
  56. 56.
    Garcia-Donas J, Esteban E, Leandro-Garcia LJ, Castellano DE, del Alba AG, Climent MA, et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 2011;12(12):1143–50.  https://doi.org/10.1016/s1470-2045(11)70266-2.CrossRefPubMedGoogle Scholar
  57. 57.
    Choi HY, Bae KS, Cho SH, Ghim JL, Choe S, Jung JA, et al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics. 2015;25(12):595–608.  https://doi.org/10.1097/fpc.0000000000000176.CrossRefPubMedGoogle Scholar
  58. 58.
    Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C > A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–24.  https://doi.org/10.2217/pgs.09.85.CrossRefPubMedGoogle Scholar
  59. 59.
    Diekstra MH, Belaustegui A, Swen JJ, Boven E, Castellano D, Gelderblom H, et al. Sunitinib-induced hypertension in CYP3A4 rs4646437 A-allele carriers with metastatic renal cell carcinoma. Pharmacogenomics J. 2017;17(1):42–6.  https://doi.org/10.1038/tpj.2015.100.CrossRefPubMedGoogle Scholar
  60. 60.
    He HR, Sun JY, Ren XD, Wang TT, Zhai YJ, Chen SY, et al. Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole. Eur J Clin Microbiol Infect Dis. 2015;34(4):811–9.  https://doi.org/10.1007/s10096-014-2294-5.CrossRefPubMedGoogle Scholar
  61. 61.
    Choi JW, Park CS, Hwang M, Nam HY, Chang HS, Park SG, et al. A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J Allergy Clin Immunol. 2008;122(6):1119–26 e7.  https://doi.org/10.1016/j.jaci.2008.09.026.CrossRefGoogle Scholar
  62. 62.
    Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66(2):357–71.  https://doi.org/10.1007/s00280-009-1170-y.CrossRefPubMedGoogle Scholar
  63. 63.
    Kim JJ, Vaziri SAJ, Rini BI, Elson P, Garcia JA, Wirka R, et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer. 2012;118(7):1946–54.  https://doi.org/10.1002/cncr.26491.CrossRefPubMedGoogle Scholar
  64. 64.
    Diekstra MH, Liu X, Swen JJ, Boven E, Castellano D, Gelderblom H, et al. Association of single nucleotide polymorphisms in IL8 and IL13 with sunitinib-induced toxicity in patients with metastatic renal cell carcinoma. Eur J Clin Pharmacol. 2015;71(12):1477–84.  https://doi.org/10.1007/s00228-015-1935-7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hacking D, Knight JC, Rockett K, Brown H, Frampton J, Kwiatkowski DP, et al. Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease-susceptibility. Genes Immun. 2004;5(4):274–82.  https://doi.org/10.1038/sj.gene.6364067.CrossRefPubMedGoogle Scholar
  66. 66.
    Amaya MP, Criado L, Blanco B, Gomez M, Torres O, Florez L, et al. Polymorphisms of pro-inflammatory cytokine genes and the risk for acute suppurative or chronic nonsuppurative apical periodontitis in a Colombian population. Int Endod J. 2013;46(1):71–8.  https://doi.org/10.1111/j.1365-2591.2012.02097.x.CrossRefPubMedGoogle Scholar
  67. 67.
    Xu CF, Johnson T, Garcia-Donas J, Choueiri TK, Sternberg CN, Davis ID, et al. IL8 polymorphisms and overall survival in pazopanib- or sunitinib-treated patients with renal cell carcinoma. Br J Cancer. 2015;112(7):1190–8.  https://doi.org/10.1038/bjc.2015.64.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell. 2007;18(12):5014–23.  https://doi.org/10.1091/mbc.E07-01-0004.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem. 2009;284(10):6038–42.  https://doi.org/10.1074/jbc.C800207200.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Xu CF, Reck BH, Xue Z, Huang L, Baker KL, Chen M, et al. Pazopanib-induced hyperbilirubinemia is associated with Gilbert’s syndrome UGT1A1 polymorphism. Br J Cancer. 2010;102(9):1371–7.  https://doi.org/10.1038/sj.bjc.6605653.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. New Engl J Med. 1995;333(18):1171–5.  https://doi.org/10.1056/nejm199511023331802.CrossRefPubMedGoogle Scholar
  72. 72.
    Zucker SD, Qin X, Rouster SD, Yu F, Green RM, Keshavan P, et al. Mechanism of indinavir-induced hyperbilirubinemia. Proc Natl Acad Sci USA. 2001;98(22):12671–6.  https://doi.org/10.1073/pnas.231140698.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Danoff TM, Campbell DA, McCarthy LC, Lewis KF, Repasch MH, Saunders AM, et al. A Gilbert’s syndrome UGT1A1 variant confers susceptibility to tranilast-induced hyperbilirubinemia. Pharmacogenomics J. 2004;4(1):49–53.  https://doi.org/10.1038/sj.tpj.6500221.CrossRefPubMedGoogle Scholar
  74. 74.
    Singer JB, Shou Y, Giles F, Kantarjian HM, Hsu Y, Robeva AS, et al. UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia. Leukemia. 2007;21(11):2311–5.  https://doi.org/10.1038/sj.leu.2404827.CrossRefPubMedGoogle Scholar
  75. 75.
    Low SK, Fukunaga K, Takahashi A, Matsuda K, Hongo F, Nakanishi H, et al. Association study of a functional variant on ABCG2 gene with sunitinib-induced severe adverse drug reaction. PLoS ONE. 2016;11(2):e0148177.  https://doi.org/10.1371/journal.pone.0148177.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Xu CF, Reck BH, Goodman VL, Xue Z, Huang L, Barnes MR, et al. Association of the hemochromatosis gene with pazopanib-induced transaminase elevation in renal cell carcinoma. J Hepatol. 2011;54(6):1237–43.  https://doi.org/10.1016/j.jhep.2010.09.028.CrossRefPubMedGoogle Scholar
  77. 77.
    Olynyk JK, Knuiman MW, Divitini ML, Bartholomew HC, Cullen DJ, Powell LW. Effects of HFE gene mutations and alcohol on iron status, liver biochemistry and morbidity. J Gastroenterol Hepatol. 2005;20(9):1435–41.  https://doi.org/10.1111/j.1440-1746.2005.03967.x.CrossRefPubMedGoogle Scholar
  78. 78.
    Nelson JE, Bhattacharya R, Lindor KD, Chalasani N, Raaka S, Heathcote EJ, et al. HFE C282Y mutations are associated with advanced hepatic fibrosis in Caucasians with nonalcoholic steatohepatitis. Hepatology. 2007;46(3):723–9.  https://doi.org/10.1002/hep.21742.CrossRefPubMedGoogle Scholar
  79. 79.
    Forooghian F, Das B. Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. Am J Ophthalmol. 2007;144(5):761–8.  https://doi.org/10.1016/j.ajo.2007.07.022.CrossRefPubMedGoogle Scholar
  80. 80.
    Xu CF, Johnson T, Wang X, Carpenter C, Graves AP, Warren L, et al. HLA-B*57:01 confers susceptibility to pazopanib-associated liver injury in patients with cancer. Clin Cancer Res. 2016;22(6):1371–7.  https://doi.org/10.1158/1078-0432.CCR-15-2044.CrossRefPubMedGoogle Scholar
  81. 81.
    Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med. 2002;166(7):916–9.  https://doi.org/10.1164/rccm.2108091.CrossRefPubMedGoogle Scholar
  82. 82.
    Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008;8(1):29–33.  https://doi.org/10.1038/sj.tpj.6500442.CrossRefPubMedGoogle Scholar
  83. 83.
    O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 2000;47(5):717–20.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 2008;8(3):186–95.  https://doi.org/10.1038/sj.tpj.6500458.CrossRefPubMedGoogle Scholar
  85. 85.
    Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.  https://doi.org/10.1038/ng.379.CrossRefPubMedGoogle Scholar
  86. 86.
    Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19(6):1458–66.  https://doi.org/10.1158/1078-0432.CCR-12-3306.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hu S, Mathijssen RH, de Bruijn P, Baker SD, Sparreboom A. Inhibition of OATP1B1 by tyrosine kinase inhibitors: in vitro-in vivo correlations. Br J Cancer. 2014;110(4):894–8.  https://doi.org/10.1038/bjc.2013.811.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.  https://doi.org/10.1124/pr.110.002857.CrossRefPubMedGoogle Scholar
  89. 89.
    Maayah ZH, Ansari MA, El Gendy MA, Al-Arifi MN, Korashy HM. Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch Toxicol. 2014;88(3):725–38.  https://doi.org/10.1007/s00204-013-1159-5.PubMedGoogle Scholar
  90. 90.
    Maayah ZH, El Gendy MA, El-Kadi AO, Korashy HM. Sunitinib, a tyrosine kinase inhibitor, induces cytochrome P450 1A1 gene in human breast cancer MCF7 cells through ligand-independent aryl hydrocarbon receptor activation. Arch Toxicol. 2013;87(5):847–56.  https://doi.org/10.1007/s00204-012-0996-y.CrossRefPubMedGoogle Scholar
  91. 91.
    Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, et al. Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis. OncoTargets Ther. 2015;8:2883–902.  https://doi.org/10.2147/OTT.S92259.CrossRefGoogle Scholar
  92. 92.
    Han F, Tan Y, Cui W, Dong L, Li W. Novel insights into etiologies of leukemia: a HuGE review and meta-analysis of CYP1A1 polymorphisms and leukemia risk. Am J Epidemiol. 2013;178(4):493–507.  https://doi.org/10.1093/aje/kwt016.CrossRefPubMedGoogle Scholar
  93. 93.
    Crofts F, Taioli E, Trachman J, Cosma GN, Currie D, Toniolo P, et al. Functional significance of different human CYP1A1 genotypes. Carcinogenesis. 1994;15(12):2961–3.CrossRefPubMedGoogle Scholar
  94. 94.
    van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res. 2011;17(3):620–9.  https://doi.org/10.1158/1078-0432.ccr-10-1828.CrossRefPubMedGoogle Scholar
  95. 95.
    Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87(3):1089–96.PubMedGoogle Scholar
  96. 96.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.PubMedGoogle Scholar
  97. 97.
    Pascual T, Apellaniz-Ruiz M, Pernaut C, Cueto-Felgueroso C, Villalba P, Alvarez C, et al. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS ONE. 2017;12(7):e0180192.  https://doi.org/10.1371/journal.pone.0180192.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    de Velasco G, Gray KP, Hamieh L, Urun Y, Carol HA, Fay AP, et al. Pharmacogenomic markers of targeted therapy toxicity in patients with metastatic renal cell carcinoma. Eur Urol Focus. 2016;2(6):633–9.  https://doi.org/10.1016/j.euf.2016.03.017.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacyKobe University HospitalKobeJapan

Personalised recommendations