Medical Oncology

, 34:173 | Cite as

Personalized ex vivo multiple peptide enrichment and detection of T cells reactive to multiple tumor-associated antigens in prostate cancer patients

  • Pavla Taborska
  • Dmitry Stakheev
  • Zuzana Strizova
  • Katerina Vavrova
  • Michal Podrazil
  • Jirina Bartunkova
  • Daniel Smrz
Original Paper

Abstract

Personalized peptide vaccination is a promising immunotherapeutic approach in prostate cancer (PCa). We therefore examined whether an approach, utilizing personalized multiple peptide-mediated ex vivo enrichment with effector T cells reactive to multiple tumor-associated antigens (TAAs), could be employed as a basis for the development of T cell immunotherapy of PCa. In this study, we used the non-adherent fraction (lymphocytes) of cryopreserved peripheral blood mononuclear cells from a leukapheretic product of biochemically recurrent (BR, n = 14) and metastatic hormone-refractory (HR, n = 12) PCa patients. The lymphocytes were primed with a pool of mixed overlapping peptides derived from 6 PCa TAAs–PSA, PAP, NY-ESO-1, MAGE-A1, MAGE-A3 and MAGE-A4. After 2 weeks of culture, the cells were stimulated with the peptides and T cell reactivity determined by externalization of CD107a. No TAAs-reactive effector T cells were detected in the patient’s lymphocytes after their reconstitution. However, following their priming with the TAAs-derived peptides and 2-week culturing, the lymphocytes became enriched with polyclonal TAAs-reactive effector CD8+ T cells in 8 out of 14 BR and 5 out of 12 HR patients. No such reactive CD8+ T cells were detected in cultured lymphocytes without the peptide priming. Stimulation of the responding cultures with peptides derived from individual TAAs revealed a unique repertoire of the reactive CD8+ T cells. Our strategy revealed that the personalized multiple peptide-mediated ex vivo enrichment with multiple TAAs-reactive T cells in the PCa patient’s lymphocytes is a viable approach for development of T cell immunotherapy of PCa.

Keywords

Prostate cancer Tumor-associated antigens Personalized T cell immunotherapy CD107a externalization 

Abbreviations

ACT

Adoptive cell transfer

TAAs

Tumor-associated antigens

PCa

Prostate cancer

TILs

Tumor-infiltrating lymphocytes

PSA

Prostate-specific antigen

PAP

Prostatic acid phosphatase

PSMA

Prostate-specific membrane antigen

DCs

Dendritic cells

PPV

Personalized peptide vaccination

PBMCs

Peripheral blood mononuclear cells

NY-ESO-1

New York esophageal squamous cell carcinoma-1

MAGE-A

Melanoma-associated antigen

BR

Biochemically recurrent prostate cancer

HR

Hormone-refractory prostate cancer

Notes

Acknowledgements

We would like to thank the clinical research staff, routine laboratory staff and our technicians for their assistance. We thank Dr. Alasdair M. Gilfillan for a critical review of the manuscript.

Funding

Research in the authors’ laboratories was supported by funding of the Charles University—Project GA UK No. 188215 and PRIMUS/MED/12, the Ministry of Health, Czech Republic—Project AZV 16-28135A and the conceptual development fund of research organization University Hospital Motol, Prague, Czech Republic 00064203.

Compliance with ethical standards

Conflict of interest

JB a MP are part-time employees of SOTIO, a.s., a biotech company developing cell-based immunotherapy. JB is a minority shareholder of this company. PT, ZS, KV, Dmitry Stakheev and Daniel Smrz declare no financial or commercial conflict of interest.

Ethical approval

This study was approved by the ethics committee for multicentric studies and evaluation of the Faculty Hospital Motol, Prague, Czech Republic. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12032_2017_1035_MOESM1_ESM.pptx (3.1 mb)
Supplementary material 1 (PPTX 3159 kb)

References

  1. 1.
    Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8. doi: 10.1126/science.aaa4967.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A. 2013;110(17):6973–8. doi: 10.1073/pnas.1221609110.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vigano S, Utzschneider DT, Perreau M, Pantaleo G, Zehn D, Harari A. Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol. 2012;2012:153863. doi: 10.1155/2012/153863.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ioannidou K, Baumgaertner P, Gannon PO, Speiser MF, Allard M, Hebeisen M, et al. Heterogeneity assessment of functional T cell avidity. Sci Rep. 2017;7:44320. doi: 10.1038/srep44320.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-Cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 2016;. doi: 10.1158/1078-0432.CCR-16-2680.PubMedGoogle Scholar
  6. 6.
    Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol. 2008;21(12):1421–7. doi: 10.1038/modpathol.2008.143.CrossRefPubMedGoogle Scholar
  7. 7.
    Vavrova K, Vrabcova P, Filipp D, Bartunkova J, Horvath R. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy. Med Oncol. 2016;33(12):136. doi: 10.1007/s12032-016-0855-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;. doi: 10.1038/nrurol.2017.77.PubMedGoogle Scholar
  9. 9.
    Noguchi M, Kakuma T, Uemura H, Nasu Y, Kumon H, Hirao Y, et al. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer. Cancer Immunol Immunother: CII. 2010;59(7):1001–9. doi: 10.1007/s00262-010-0822-4.CrossRefPubMedGoogle Scholar
  10. 10.
    Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Sochorova K, et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–205. doi: 10.18632/oncotarget.4145.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fucikova J, Podrazil M, Jarolim L, Bilkova P, Hensler M, Becht E et al. Phase I/II trial of dendritic-cell based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the prostate cancer. Cancer Immunol Immunother: CII. 2017 (In Press).Google Scholar
  12. 12.
    Rožková D, Tišerová H, Fučíková J, Lašt’ovička J, Podrazil M, Ulčová H, et al. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol. 2009;131(1):1–10. doi: 10.1016/j.clim.2009.01.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165–77. doi: 10.1002/ijc.28766.CrossRefPubMedGoogle Scholar
  14. 14.
    Hudolin T, Juretic A, Spagnoli GC, Pasini J, Bandic D, Heberer M, et al. Immunohistochemical expression of tumor antigens MAGE-A1, MAGE-A3/4, and NY-ESO-1 in cancerous and benign prostatic tissue. Prostate. 2006;66(1):13–8. doi: 10.1002/pros.20312.CrossRefPubMedGoogle Scholar
  15. 15.
    Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281(1–2):65–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med. 2003;9(11):1377–82. doi: 10.1038/nm942.CrossRefPubMedGoogle Scholar
  17. 17.
    Japp AS, Kursunel MA, Meier S, Malzer JN, Li X, Rahman NA, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother: CII. 2015;64(11):1487–94. doi: 10.1007/s00262-015-1752-y.CrossRefPubMedGoogle Scholar
  18. 18.
    Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying individual T cell receptors of optimal avidity for tumor antigens. Front Immunol. 2015;6:582. doi: 10.3389/fimmu.2015.00582.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol/Hematol. 2017;113:292–303. doi: 10.1016/j.critrevonc.2017.02.026.CrossRefGoogle Scholar
  20. 20.
    Dalgleish AG. Rationale for combining immunotherapy with chemotherapy. Immunotherapy. 2015;7(3):309–16. doi: 10.2217/imt.14.111.CrossRefPubMedGoogle Scholar
  21. 21.
    Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 2016;4:51. doi: 10.1186/s40425-016-0156-7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kalina JL, Neilson DS, Comber AP, Rauw JM, Alexander AS, Vergidis J, et al. Immune modulation by androgen deprivation and radiation therapy: implications for prostate cancer immunotherapy. Cancers. 2017;9(2):13. doi: 10.3390/cancers9020013.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Noguchi M, Uemura H, Naito S, Akaza H, Yamada A, Itoh K. A phase i study of personalized peptide vaccination using 14 kinds of vaccine in combination with low-dose estramustine in HLA-A24-positive patients with castration-resistant prostate cancer. Prostate. 2011;71(5):470–9. doi: 10.1002/pros.21261.CrossRefPubMedGoogle Scholar
  24. 24.
    Noguchi M, Moriya F, Suekane S, Ohnishi R, Matsueda S, Sasada T, et al. A phase II trial of personalized peptide vaccination in castration-resistant prostate cancer patients: prolongation of prostate-specific antigen doubling time. BMC Cancer. 2013;13:613. doi: 10.1186/1471-2407-13-613.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Noguchi M, Arai G, Matsumoto K, Naito S, Moriya F, Suekane S, et al. Phase I trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: dose-related immune boosting and suppression. Cancer Immunol Immunother: CII. 2015;64(4):493–505. doi: 10.1007/s00262-015-1660-1.CrossRefPubMedGoogle Scholar
  26. 26.
    Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490(7420):412–6. doi: 10.1038/nature11538.CrossRefPubMedGoogle Scholar
  27. 27.
    Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol. 2017;48:142–52. doi: 10.1016/j.copbio.2017.03.024.CrossRefPubMedGoogle Scholar
  28. 28.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi: 10.1126/science.aaa4971.CrossRefPubMedGoogle Scholar
  29. 29.
    Olsson AY, Bjartell A, Lilja H, Lundwall A. Expression of prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) in ileum and other extraprostatic tissues. Int J Cancer. 2005;113(2):290–7. doi: 10.1002/ijc.20605.CrossRefPubMedGoogle Scholar
  30. 30.
    Graddis TJ, McMahan CJ, Tamman J, Page KJ, Trager JB. Prostatic acid phosphatase expression in human tissues. Int J Clin Exp Pathol. 2011;4(3):295–306.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Suzuki N, Maeda Y, Tanaka S, Hida N, Mine T, Yamamoto K, et al. Detection of peptide-specific cytotoxic T-lymphocyte precursors used for specific immunotherapy of pancreatic cancer. Int J Cancer. 2002;98(1):45–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Maeda Y, Ito M, Harashima N, Nakatsura T, Hida N, Imai N, et al. Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients. Int J Cancer. 2002;99(3):409–17. doi: 10.1002/ijc.10377.CrossRefPubMedGoogle Scholar
  33. 33.
    Hida N, Maeda Y, Katagiri K, Takasu H, Harada M, Itoh K. A simple culture protocol to detect peptide-specific cytotoxic T lymphocyte precursors in the circulation. Cancer Immunol Immunother: CII. 2002;51(4):219–28. doi: 10.1007/s00262-002-0273-7.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim MT, Kurup SP, Starbeck-Miller GR, Harty JT. Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals. J Immunol. 2016;197(5):1754–61. doi: 10.4049/jimmunol.1600641.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim MT, Richer MJ, Gross BP, Norian LA, Badovinac VP, Harty JT. Enhancing dendritic cell-based immunotherapy with IL-2/monoclonal antibody complexes for control of established tumors. J Immunol. 2015;195(9):4537–44. doi: 10.4049/jimmunol.1501071.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gizinski AM, Fox DA, Sarkar S. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Co-stimulation and T cells as therapeutic targets. Best practice & research. Clin Rheumatol. 2010;24(4):463–77. doi: 10.1016/j.berh.2009.12.015.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of ImmunologyCharles University, 2nd Faculty of Medicine and University Hospital MotolPrague 5Czech Republic

Personalised recommendations