Skip to main content

Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1

Abstract

Potential drug target identification and mechanism of action is an important step in drug discovery process, which can be achieved by biochemical methods, genetic interactions or computational conjectures. Sometimes more than one approach is implemented to mine out the potential drug target and characterize the on-target or off-target effects. A novel anticancer agent RH1 is designed as pro-drug to be activated by NQO1, an enzyme overexpressed in many types of tumors. However, increasing data show that RH1 can affect cells in NQO1-independent fashion. Here, we implemented the bioinformatics approach of modeling and molecular docking for search of RH1 targets among protein kinase species. We have examined 129 protein kinases in total where 96 protein kinases are in complexes with their inhibitor, 11 kinases were in the unbound state with any ligand and for 22 protein kinases 3D structure were modeled. Comparison of calculated free energy of binding of RH1 with indigenous kinase inhibitors binding efficiency as well as alignment of their pharmacophoric maps let us predict and ranked protein kinases such as KIT, CDK2, CDK6, MAPK1, NEK2 and others as the most prominent off-targets of RH1. Our finding opens new avenues in search of protein targets that might be responsible for curing cancer by new promising drug RH1 in NQO1-independent way.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9:232–40. doi:10.1038/nchembio.1199.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Rasolohery I, Moroy G, Guyon F. PatchSearch: a fast computational method for off-target detection. J Chem Inf Model. 2017;57:769–77. doi:10.1021/acs.jcim.6b00529.

    CAS  Article  PubMed  Google Scholar 

  3. Bunnage ME. Getting pharmaceutical R&D back on target. Nat Chem Biol. 2011;7:335–9. doi:10.1038/nchembio.581.

    CAS  Article  PubMed  Google Scholar 

  4. Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov Today. 2010;15:749–56. doi:10.1016/j.drudis.2010.06.006.

    Article  PubMed  Google Scholar 

  5. Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21:288–98. doi:10.1016/j.drudis.2015.12.007.

    CAS  Article  PubMed  Google Scholar 

  6. Klaeger S, Gohlke B, Perrin J, Gupta V, Heinzlmeir S, Helm D, et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem Biol. 2016;11:1245–54. doi:10.1021/acschembio.5b01063.

    CAS  Article  PubMed  Google Scholar 

  7. Cohen P. Protein kinases? The major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1:309–15. doi:10.1038/nrd773.

    CAS  Article  PubMed  Google Scholar 

  8. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34. doi:10.1126/science.1075762.

    CAS  Article  PubMed  Google Scholar 

  9. Cohen P, Alessi DR. Kinase drug discovery—Wnext in the field? ACS Chem Biol. 2013;8:96–104. doi:10.1021/cb300610s.

    CAS  Article  PubMed  Google Scholar 

  10. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36:422–39. doi:10.1016/j.tips.2015.04.005.

    CAS  Article  PubMed  Google Scholar 

  11. Ward TH, Danson S, McGown AT, Ranson M, Coe NA, Jayson GC, et al. Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin Cancer Res. 2005;11:2695–701. doi:10.1158/1078-0432.CCR-04-1751.

    CAS  Article  PubMed  Google Scholar 

  12. Dehn DL, Inayat-Hussain SH, Ross D. RH1 induces cellular damage in an NAD(P)H: Quinone oxidoreductase 1-dependent manner: relationship between DNA cross-linking, cell cycle perturbations, and apoptosis. J Pharmacol Exp Ther. 2004;313:771–9. doi:10.1124/jpet.104.081380.

    Article  Google Scholar 

  13. Danson SJ, Johnson P, Ward TH, Dawson M, Denneny O, Dickinson G, et al. Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1. Ann Oncol. 2011;22:1653–60. doi:10.1093/annonc/mdq638.

    CAS  Article  PubMed  Google Scholar 

  14. Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 substrates are potent and selective anticancer agents. ACS Chem Biol. 2013;8:2173–83. doi:10.1021/cb4005832.

    CAS  Article  PubMed  Google Scholar 

  15. Tudor G, Alley M, Nelson CM, Huang R, Covell DG, Gutierrez P, et al. Cytotoxicity of RH1: NAD(P)H:quinone acceptor oxidoreductase (NQO1)-independent oxidative stress and apoptosis induction. Anticancer Drugs. 2005;16:381–91.

    CAS  Article  PubMed  Google Scholar 

  16. Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry. 2015;54:47–59. doi:10.1021/bi500959t.

    CAS  Article  PubMed  Google Scholar 

  17. Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct Biol. 2009;9:7. doi:10.1186/1472-6807-9-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63. doi:10.1182/blood-2007-07-102061.

    CAS  Article  PubMed  Google Scholar 

  19. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25:1035–44. doi:10.1038/nbt1328.

    CAS  Article  PubMed  Google Scholar 

  20. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res. 2009;37:W305–11. doi:10.1093/nar/gkp427.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41. doi:10.1101/gr.772403.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl Acids Res. 2013;41(2013):D377–86. doi:10.1093/nar/gks1118.

    CAS  Article  PubMed  Google Scholar 

  23. Selleckchem. 2017. http://www.selleckchem.com/.

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucl Acids Res. 2000;28:235–42.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucl Acids Res. 2016;44:D1202–13. doi:10.1093/nar/gkv951.

    CAS  Article  PubMed  Google Scholar 

  26. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res. 2014;42:D1091–7. doi:10.1093/nar/gkt1068.

    CAS  Article  PubMed  Google Scholar 

  27. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52:1757–68. doi:10.1021/ci3001277.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35. doi:10.1021/ja00051a040.

    CAS  Article  Google Scholar 

  29. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7:539. doi:10.1038/msb.2011.75.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Garnier J, Gibrat J.-F, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–53. doi:10.1016/S0076-6879(96)66034-0.

  31. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res. 2014;42:W252–8. doi:10.1093/nar/gku340.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. doi:10.1038/nprot.2015.053.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2014;12:7–8. doi:10.1038/nmeth.3213.

    Article  Google Scholar 

  34. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res. 2007;35:W407–10. doi:10.1093/nar/gkm290.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct Funct Bioinform. 2003;50:437–50. doi:10.1002/prot.10286.

    CAS  Article  Google Scholar 

  36. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802. doi:10.1002/jcc.20289.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(33–8):27–8.

    Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. doi:10.1002/jcc.21256.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. doi:10.1002/jcc.21334.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12. doi:10.1002/jcc.20084.

    CAS  Article  PubMed  Google Scholar 

  41. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. 2017. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/.

  42. Schrödinger L. The PyMOL molecular graphics system. 2017. https://www.schrodinger.com/pymol.

  43. Huang D, Zhou T, Lafleur K, Nevado C, Caflisch A. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics. 2010;26:198–204. doi:10.1093/bioinformatics/btp650.

    Article  PubMed  Google Scholar 

  44. Peng S-B, Henry JR, Kaufman MD, Lu W-P, Smith BD, Vogeti S, et al. Inhibition of RAF isoforms and active dimers by LY3009120 Leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell. 2015;28:384–98. doi:10.1016/j.ccell.2015.08.002.

    CAS  Article  PubMed  Google Scholar 

  45. Zhao B. Structural basis for Chk1 inhibition by UCN-01. J Biol Chem. 2002;277:46609–15. doi:10.1074/jbc.M201233200.

    CAS  Article  PubMed  Google Scholar 

  46. Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–43. doi:10.1021/jm049353p.

    CAS  Article  PubMed  Google Scholar 

  47. Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/cyclin K. Nat Commun. 2014;5:3505. doi:10.1038/ncomms4505.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mol CD, Lim KB, Sridhar V, Zou H, Chien EYT, Sang B-C, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278:31461–4. doi:10.1074/jbc.C300186200.

    CAS  Article  PubMed  Google Scholar 

  49. Yap JL, Worlikar S, MacKerell AD, Shapiro P, Fletcher S. Small-molecule inhibitors of the ERK signaling pathway: towards novel anticancer therapeutics. ChemMedChem. 2011;6:38–48. doi:10.1002/cmdc.201000354.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Duncia JV, Santella JB, Higley CA, Pitts WJ, Wityak J, Frietze WE, et al. MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett. 1998;8:2839–44.

    CAS  Article  PubMed  Google Scholar 

  51. Unzue A, Dong J, Lafleur K, Zhao H, Frugier E, Caflisch A, et al. Pyrrolo[3,2- b]quinoxaline derivatives as types I 1/2 and II Eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J Med Chem. 2014;57:6834–44. doi:10.1021/jm5009242.

    CAS  Article  PubMed  Google Scholar 

  52. Kiryanov A, Natala S, Jones B, McBride C, Feher V, Lam B, et al. Structure-based design and SAR development of 5,6-dihydroimidazolo[1,5-f]pteridine derivatives as novel Polo-like kinase-1 inhibitors. Bioorg Med Chem Lett. 2017;27:1311–5. doi:10.1016/j.bmcl.2016.10.009.

    CAS  Article  PubMed  Google Scholar 

  53. Nie Z, Feher V, Natala S, McBride C, Kiryanov A, Jones B, et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23:3662–6. doi:10.1016/j.bmcl.2013.02.083.

    CAS  Article  PubMed  Google Scholar 

  54. Duffey MO, Vos TJ, Adams R, Alley J, Anthony J, Barrett C, et al. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of polo-like kinase 1 (MLN0905). J Med Chem. 2012;55:197–208. doi:10.1021/jm2011172.

    CAS  Article  PubMed  Google Scholar 

  55. Jain R, Mathur M, Lan J, Costales A, Atallah G, Ramurthy S, et al. Discovery of potent and selective RSK inhibitors as biological probes. J Med Chem. 2015;58:6766–83. doi:10.1021/acs.jmedchem.5b00450.

    CAS  Article  PubMed  Google Scholar 

  56. Costales A, Mathur M, Ramurthy S, Lan J, Subramanian S, Jain R, et al. 2-Amino-7-substituted benzoxazole analogs as potent RSK2 inhibitors. Bioorg Med Chem Lett. 2014;24:1592–6. doi:10.1016/j.bmcl.2014.01.058.

    CAS  Article  PubMed  Google Scholar 

  57. Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, et al. Structure-based design of orally bioavailable 1 H -pyrrolo[3,2- c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem. 2013;56:10045–65. doi:10.1021/jm401395s.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.P.G and V.A.B were granted the travel doctoral student exchange tuition in the framework of the Erasmus Mundus EUPHRATES project (3rd Cohort), 2016–2017.

Funding

This research was funded by Scientific Council of Lithuania (Scientific team project #MIP-033/2014); therefore, we thank the organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Valius.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.P., Bastikar, V.A., Kuciauskas, D. et al. Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1. Med Oncol 34, 176 (2017). https://doi.org/10.1007/s12032-017-1011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1011-5

Keywords

  • Molecular docking
  • Pharmacophoric interaction
  • NEK
  • KIT
  • MAP kinase
  • Kidney cancer