Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9:232–40. doi:10.1038/nchembio.1199.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rasolohery I, Moroy G, Guyon F. PatchSearch: a fast computational method for off-target detection. J Chem Inf Model. 2017;57:769–77. doi:10.1021/acs.jcim.6b00529.
CAS
Article
PubMed
Google Scholar
Bunnage ME. Getting pharmaceutical R&D back on target. Nat Chem Biol. 2011;7:335–9. doi:10.1038/nchembio.581.
CAS
Article
PubMed
Google Scholar
Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov Today. 2010;15:749–56. doi:10.1016/j.drudis.2010.06.006.
Article
PubMed
Google Scholar
Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21:288–98. doi:10.1016/j.drudis.2015.12.007.
CAS
Article
PubMed
Google Scholar
Klaeger S, Gohlke B, Perrin J, Gupta V, Heinzlmeir S, Helm D, et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem Biol. 2016;11:1245–54. doi:10.1021/acschembio.5b01063.
CAS
Article
PubMed
Google Scholar
Cohen P. Protein kinases? The major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1:309–15. doi:10.1038/nrd773.
CAS
Article
PubMed
Google Scholar
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34. doi:10.1126/science.1075762.
CAS
Article
PubMed
Google Scholar
Cohen P, Alessi DR. Kinase drug discovery—Wnext in the field? ACS Chem Biol. 2013;8:96–104. doi:10.1021/cb300610s.
CAS
Article
PubMed
Google Scholar
Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36:422–39. doi:10.1016/j.tips.2015.04.005.
CAS
Article
PubMed
Google Scholar
Ward TH, Danson S, McGown AT, Ranson M, Coe NA, Jayson GC, et al. Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin Cancer Res. 2005;11:2695–701. doi:10.1158/1078-0432.CCR-04-1751.
CAS
Article
PubMed
Google Scholar
Dehn DL, Inayat-Hussain SH, Ross D. RH1 induces cellular damage in an NAD(P)H: Quinone oxidoreductase 1-dependent manner: relationship between DNA cross-linking, cell cycle perturbations, and apoptosis. J Pharmacol Exp Ther. 2004;313:771–9. doi:10.1124/jpet.104.081380.
Article
Google Scholar
Danson SJ, Johnson P, Ward TH, Dawson M, Denneny O, Dickinson G, et al. Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1. Ann Oncol. 2011;22:1653–60. doi:10.1093/annonc/mdq638.
CAS
Article
PubMed
Google Scholar
Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 substrates are potent and selective anticancer agents. ACS Chem Biol. 2013;8:2173–83. doi:10.1021/cb4005832.
CAS
Article
PubMed
Google Scholar
Tudor G, Alley M, Nelson CM, Huang R, Covell DG, Gutierrez P, et al. Cytotoxicity of RH1: NAD(P)H:quinone acceptor oxidoreductase (NQO1)-independent oxidative stress and apoptosis induction. Anticancer Drugs. 2005;16:381–91.
CAS
Article
PubMed
Google Scholar
Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry. 2015;54:47–59. doi:10.1021/bi500959t.
CAS
Article
PubMed
Google Scholar
Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct Biol. 2009;9:7. doi:10.1186/1472-6807-9-7.
Article
PubMed
PubMed Central
Google Scholar
Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63. doi:10.1182/blood-2007-07-102061.
CAS
Article
PubMed
Google Scholar
Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25:1035–44. doi:10.1038/nbt1328.
CAS
Article
PubMed
Google Scholar
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res. 2009;37:W305–11. doi:10.1093/nar/gkp427.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41. doi:10.1101/gr.772403.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl Acids Res. 2013;41(2013):D377–86. doi:10.1093/nar/gks1118.
CAS
Article
PubMed
Google Scholar
Selleckchem. 2017. http://www.selleckchem.com/.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucl Acids Res. 2000;28:235–42.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucl Acids Res. 2016;44:D1202–13. doi:10.1093/nar/gkv951.
CAS
Article
PubMed
Google Scholar
Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res. 2014;42:D1091–7. doi:10.1093/nar/gkt1068.
CAS
Article
PubMed
Google Scholar
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52:1757–68. doi:10.1021/ci3001277.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35. doi:10.1021/ja00051a040.
CAS
Article
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7:539. doi:10.1038/msb.2011.75.
Article
PubMed
PubMed Central
Google Scholar
Garnier J, Gibrat J.-F, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–53. doi:10.1016/S0076-6879(96)66034-0.
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res. 2014;42:W252–8. doi:10.1093/nar/gku340.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. doi:10.1038/nprot.2015.053.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2014;12:7–8. doi:10.1038/nmeth.3213.
Article
Google Scholar
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res. 2007;35:W407–10. doi:10.1093/nar/gkm290.
Article
PubMed
PubMed Central
Google Scholar
Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct Funct Bioinform. 2003;50:437–50. doi:10.1002/prot.10286.
CAS
Article
Google Scholar
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802. doi:10.1002/jcc.20289.
CAS
Article
PubMed
PubMed Central
Google Scholar
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(33–8):27–8.
Google Scholar
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. doi:10.1002/jcc.21256.
CAS
Article
PubMed
PubMed Central
Google Scholar
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. doi:10.1002/jcc.21334.
CAS
PubMed
PubMed Central
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12. doi:10.1002/jcc.20084.
CAS
Article
PubMed
Google Scholar
Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. 2017. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/.
Schrödinger L. The PyMOL molecular graphics system. 2017. https://www.schrodinger.com/pymol.
Huang D, Zhou T, Lafleur K, Nevado C, Caflisch A. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics. 2010;26:198–204. doi:10.1093/bioinformatics/btp650.
Article
PubMed
Google Scholar
Peng S-B, Henry JR, Kaufman MD, Lu W-P, Smith BD, Vogeti S, et al. Inhibition of RAF isoforms and active dimers by LY3009120 Leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell. 2015;28:384–98. doi:10.1016/j.ccell.2015.08.002.
CAS
Article
PubMed
Google Scholar
Zhao B. Structural basis for Chk1 inhibition by UCN-01. J Biol Chem. 2002;277:46609–15. doi:10.1074/jbc.M201233200.
CAS
Article
PubMed
Google Scholar
Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–43. doi:10.1021/jm049353p.
CAS
Article
PubMed
Google Scholar
Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/cyclin K. Nat Commun. 2014;5:3505. doi:10.1038/ncomms4505.
Article
PubMed
PubMed Central
Google Scholar
Mol CD, Lim KB, Sridhar V, Zou H, Chien EYT, Sang B-C, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278:31461–4. doi:10.1074/jbc.C300186200.
CAS
Article
PubMed
Google Scholar
Yap JL, Worlikar S, MacKerell AD, Shapiro P, Fletcher S. Small-molecule inhibitors of the ERK signaling pathway: towards novel anticancer therapeutics. ChemMedChem. 2011;6:38–48. doi:10.1002/cmdc.201000354.
CAS
Article
PubMed
PubMed Central
Google Scholar
Duncia JV, Santella JB, Higley CA, Pitts WJ, Wityak J, Frietze WE, et al. MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett. 1998;8:2839–44.
CAS
Article
PubMed
Google Scholar
Unzue A, Dong J, Lafleur K, Zhao H, Frugier E, Caflisch A, et al. Pyrrolo[3,2- b]quinoxaline derivatives as types I 1/2 and II Eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J Med Chem. 2014;57:6834–44. doi:10.1021/jm5009242.
CAS
Article
PubMed
Google Scholar
Kiryanov A, Natala S, Jones B, McBride C, Feher V, Lam B, et al. Structure-based design and SAR development of 5,6-dihydroimidazolo[1,5-f]pteridine derivatives as novel Polo-like kinase-1 inhibitors. Bioorg Med Chem Lett. 2017;27:1311–5. doi:10.1016/j.bmcl.2016.10.009.
CAS
Article
PubMed
Google Scholar
Nie Z, Feher V, Natala S, McBride C, Kiryanov A, Jones B, et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23:3662–6. doi:10.1016/j.bmcl.2013.02.083.
CAS
Article
PubMed
Google Scholar
Duffey MO, Vos TJ, Adams R, Alley J, Anthony J, Barrett C, et al. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of polo-like kinase 1 (MLN0905). J Med Chem. 2012;55:197–208. doi:10.1021/jm2011172.
CAS
Article
PubMed
Google Scholar
Jain R, Mathur M, Lan J, Costales A, Atallah G, Ramurthy S, et al. Discovery of potent and selective RSK inhibitors as biological probes. J Med Chem. 2015;58:6766–83. doi:10.1021/acs.jmedchem.5b00450.
CAS
Article
PubMed
Google Scholar
Costales A, Mathur M, Ramurthy S, Lan J, Subramanian S, Jain R, et al. 2-Amino-7-substituted benzoxazole analogs as potent RSK2 inhibitors. Bioorg Med Chem Lett. 2014;24:1592–6. doi:10.1016/j.bmcl.2014.01.058.
CAS
Article
PubMed
Google Scholar
Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, et al. Structure-based design of orally bioavailable 1 H -pyrrolo[3,2- c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem. 2013;56:10045–65. doi:10.1021/jm401395s.
CAS
Article
PubMed
PubMed Central
Google Scholar