Advertisement

Medical Oncology

, 34:176 | Cite as

Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1

  • Pramodkumar P. Gupta
  • Virupaksha A. Bastikar
  • Dalius Kuciauskas
  • Shanker Lal Kothari
  • Jonas Cicenas
  • Mindaugas Valius
Original Paper

Abstract

Potential drug target identification and mechanism of action is an important step in drug discovery process, which can be achieved by biochemical methods, genetic interactions or computational conjectures. Sometimes more than one approach is implemented to mine out the potential drug target and characterize the on-target or off-target effects. A novel anticancer agent RH1 is designed as pro-drug to be activated by NQO1, an enzyme overexpressed in many types of tumors. However, increasing data show that RH1 can affect cells in NQO1-independent fashion. Here, we implemented the bioinformatics approach of modeling and molecular docking for search of RH1 targets among protein kinase species. We have examined 129 protein kinases in total where 96 protein kinases are in complexes with their inhibitor, 11 kinases were in the unbound state with any ligand and for 22 protein kinases 3D structure were modeled. Comparison of calculated free energy of binding of RH1 with indigenous kinase inhibitors binding efficiency as well as alignment of their pharmacophoric maps let us predict and ranked protein kinases such as KIT, CDK2, CDK6, MAPK1, NEK2 and others as the most prominent off-targets of RH1. Our finding opens new avenues in search of protein targets that might be responsible for curing cancer by new promising drug RH1 in NQO1-independent way.

Keywords

Molecular docking Pharmacophoric interaction NEK KIT MAP kinase Kidney cancer 

Notes

Acknowledgements

P.P.G and V.A.B were granted the travel doctoral student exchange tuition in the framework of the Erasmus Mundus EUPHRATES project (3rd Cohort), 2016–2017.

Funding

This research was funded by Scientific Council of Lithuania (Scientific team project #MIP-033/2014); therefore, we thank the organization.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12032_2017_1011_MOESM1_ESM.xlsx (73 kb)
Supplementary material 1 (XLSX 72 kb)

References

  1. 1.
    Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9:232–40. doi: 10.1038/nchembio.1199.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rasolohery I, Moroy G, Guyon F. PatchSearch: a fast computational method for off-target detection. J Chem Inf Model. 2017;57:769–77. doi: 10.1021/acs.jcim.6b00529.CrossRefPubMedGoogle Scholar
  3. 3.
    Bunnage ME. Getting pharmaceutical R&D back on target. Nat Chem Biol. 2011;7:335–9. doi: 10.1038/nchembio.581.CrossRefPubMedGoogle Scholar
  4. 4.
    Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov Today. 2010;15:749–56. doi: 10.1016/j.drudis.2010.06.006.CrossRefPubMedGoogle Scholar
  5. 5.
    Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21:288–98. doi: 10.1016/j.drudis.2015.12.007.CrossRefPubMedGoogle Scholar
  6. 6.
    Klaeger S, Gohlke B, Perrin J, Gupta V, Heinzlmeir S, Helm D, et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem Biol. 2016;11:1245–54. doi: 10.1021/acschembio.5b01063.CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen P. Protein kinases? The major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1:309–15. doi: 10.1038/nrd773.CrossRefPubMedGoogle Scholar
  8. 8.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34. doi: 10.1126/science.1075762.CrossRefPubMedGoogle Scholar
  9. 9.
    Cohen P, Alessi DR. Kinase drug discovery—Wnext in the field? ACS Chem Biol. 2013;8:96–104. doi: 10.1021/cb300610s.CrossRefPubMedGoogle Scholar
  10. 10.
    Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36:422–39. doi: 10.1016/j.tips.2015.04.005.CrossRefPubMedGoogle Scholar
  11. 11.
    Ward TH, Danson S, McGown AT, Ranson M, Coe NA, Jayson GC, et al. Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin Cancer Res. 2005;11:2695–701. doi: 10.1158/1078-0432.CCR-04-1751.CrossRefPubMedGoogle Scholar
  12. 12.
    Dehn DL, Inayat-Hussain SH, Ross D. RH1 induces cellular damage in an NAD(P)H: Quinone oxidoreductase 1-dependent manner: relationship between DNA cross-linking, cell cycle perturbations, and apoptosis. J Pharmacol Exp Ther. 2004;313:771–9. doi: 10.1124/jpet.104.081380.CrossRefGoogle Scholar
  13. 13.
    Danson SJ, Johnson P, Ward TH, Dawson M, Denneny O, Dickinson G, et al. Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1. Ann Oncol. 2011;22:1653–60. doi: 10.1093/annonc/mdq638.CrossRefPubMedGoogle Scholar
  14. 14.
    Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 substrates are potent and selective anticancer agents. ACS Chem Biol. 2013;8:2173–83. doi: 10.1021/cb4005832.CrossRefPubMedGoogle Scholar
  15. 15.
    Tudor G, Alley M, Nelson CM, Huang R, Covell DG, Gutierrez P, et al. Cytotoxicity of RH1: NAD(P)H:quinone acceptor oxidoreductase (NQO1)-independent oxidative stress and apoptosis induction. Anticancer Drugs. 2005;16:381–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry. 2015;54:47–59. doi: 10.1021/bi500959t.CrossRefPubMedGoogle Scholar
  17. 17.
    Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct Biol. 2009;9:7. doi: 10.1186/1472-6807-9-7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63. doi: 10.1182/blood-2007-07-102061.CrossRefPubMedGoogle Scholar
  19. 19.
    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25:1035–44. doi: 10.1038/nbt1328.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res. 2009;37:W305–11. doi: 10.1093/nar/gkp427.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41. doi: 10.1101/gr.772403.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl Acids Res. 2013;41(2013):D377–86. doi: 10.1093/nar/gks1118.CrossRefPubMedGoogle Scholar
  23. 23.
    Selleckchem. 2017. http://www.selleckchem.com/.
  24. 24.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucl Acids Res. 2000;28:235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucl Acids Res. 2016;44:D1202–13. doi: 10.1093/nar/gkv951.CrossRefPubMedGoogle Scholar
  26. 26.
    Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res. 2014;42:D1091–7. doi: 10.1093/nar/gkt1068.CrossRefPubMedGoogle Scholar
  27. 27.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52:1757–68. doi: 10.1021/ci3001277.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35. doi: 10.1021/ja00051a040.CrossRefGoogle Scholar
  29. 29.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7:539. doi: 10.1038/msb.2011.75.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Garnier J, Gibrat J.-F, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–53. doi: 10.1016/S0076-6879(96)66034-0.
  31. 31.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res. 2014;42:W252–8. doi: 10.1093/nar/gku340.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. doi: 10.1038/nprot.2015.053.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2014;12:7–8. doi: 10.1038/nmeth.3213.CrossRefGoogle Scholar
  34. 34.
    Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res. 2007;35:W407–10. doi: 10.1093/nar/gkm290.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct Funct Bioinform. 2003;50:437–50. doi: 10.1002/prot.10286.CrossRefGoogle Scholar
  36. 36.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802. doi: 10.1002/jcc.20289.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(33–8):27–8.Google Scholar
  38. 38.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. doi: 10.1002/jcc.21256.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. doi: 10.1002/jcc.21334.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12. doi: 10.1002/jcc.20084.CrossRefPubMedGoogle Scholar
  41. 41.
    Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. 2017. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/.
  42. 42.
    Schrödinger L. The PyMOL molecular graphics system. 2017. https://www.schrodinger.com/pymol.
  43. 43.
    Huang D, Zhou T, Lafleur K, Nevado C, Caflisch A. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics. 2010;26:198–204. doi: 10.1093/bioinformatics/btp650.CrossRefPubMedGoogle Scholar
  44. 44.
    Peng S-B, Henry JR, Kaufman MD, Lu W-P, Smith BD, Vogeti S, et al. Inhibition of RAF isoforms and active dimers by LY3009120 Leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell. 2015;28:384–98. doi: 10.1016/j.ccell.2015.08.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao B. Structural basis for Chk1 inhibition by UCN-01. J Biol Chem. 2002;277:46609–15. doi: 10.1074/jbc.M201233200.CrossRefPubMedGoogle Scholar
  46. 46.
    Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–43. doi: 10.1021/jm049353p.CrossRefPubMedGoogle Scholar
  47. 47.
    Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/cyclin K. Nat Commun. 2014;5:3505. doi: 10.1038/ncomms4505.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mol CD, Lim KB, Sridhar V, Zou H, Chien EYT, Sang B-C, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278:31461–4. doi: 10.1074/jbc.C300186200.CrossRefPubMedGoogle Scholar
  49. 49.
    Yap JL, Worlikar S, MacKerell AD, Shapiro P, Fletcher S. Small-molecule inhibitors of the ERK signaling pathway: towards novel anticancer therapeutics. ChemMedChem. 2011;6:38–48. doi: 10.1002/cmdc.201000354.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Duncia JV, Santella JB, Higley CA, Pitts WJ, Wityak J, Frietze WE, et al. MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett. 1998;8:2839–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Unzue A, Dong J, Lafleur K, Zhao H, Frugier E, Caflisch A, et al. Pyrrolo[3,2- b]quinoxaline derivatives as types I 1/2 and II Eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J Med Chem. 2014;57:6834–44. doi: 10.1021/jm5009242.CrossRefPubMedGoogle Scholar
  52. 52.
    Kiryanov A, Natala S, Jones B, McBride C, Feher V, Lam B, et al. Structure-based design and SAR development of 5,6-dihydroimidazolo[1,5-f]pteridine derivatives as novel Polo-like kinase-1 inhibitors. Bioorg Med Chem Lett. 2017;27:1311–5. doi: 10.1016/j.bmcl.2016.10.009.CrossRefPubMedGoogle Scholar
  53. 53.
    Nie Z, Feher V, Natala S, McBride C, Kiryanov A, Jones B, et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23:3662–6. doi: 10.1016/j.bmcl.2013.02.083.CrossRefPubMedGoogle Scholar
  54. 54.
    Duffey MO, Vos TJ, Adams R, Alley J, Anthony J, Barrett C, et al. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of polo-like kinase 1 (MLN0905). J Med Chem. 2012;55:197–208. doi: 10.1021/jm2011172.CrossRefPubMedGoogle Scholar
  55. 55.
    Jain R, Mathur M, Lan J, Costales A, Atallah G, Ramurthy S, et al. Discovery of potent and selective RSK inhibitors as biological probes. J Med Chem. 2015;58:6766–83. doi: 10.1021/acs.jmedchem.5b00450.CrossRefPubMedGoogle Scholar
  56. 56.
    Costales A, Mathur M, Ramurthy S, Lan J, Subramanian S, Jain R, et al. 2-Amino-7-substituted benzoxazole analogs as potent RSK2 inhibitors. Bioorg Med Chem Lett. 2014;24:1592–6. doi: 10.1016/j.bmcl.2014.01.058.CrossRefPubMedGoogle Scholar
  57. 57.
    Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, et al. Structure-based design of orally bioavailable 1 H -pyrrolo[3,2- c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem. 2013;56:10045–65. doi: 10.1021/jm401395s.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Proteomics Center, Institute of BiochemistryVilnius University Life Sciences CenterVilniusLithuania
  2. 2.Amity Institute of BiotechnologyAmity University RajasthanJaipurIndia
  3. 3.MAP Kinase Resource, BioinformaticsBernSwitzerland
  4. 4.Amity Institute of BiotechnologyAmity University MumbaiJaipurIndia

Personalised recommendations