Skip to main content

Advertisement

Log in

Identification of a novel leukemic-specific splice variant of DNMT3B and its stability

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

DNA methyltransferases make use of alternative splicing mechanism to generate various splice variants, but their role(s) in modulating DNA methylation patterns in the cells is unclear. Notably, DNMT3B alone contains nearly 40 different splice variants. In this study, we have identified a novel splice variant of DNMT3B, which lacks exon 7 and 10 from leukemic cell lines which we termed as DNMT3B9. The exon 7 codes for the major part of PWWP domain, and exon 10 inclusion serves as a pluripotent marker. By quantitative RT-PCR using exon–exon junction-specific primers, we showed higher level of DNMT3B9 transcripts in several leukemic cell lines. However, DNMT3B9 expression was less in other tested cancer cell lines indicating that DNMT3B9 might serve as a leukemic-specific biomarker. Surprisingly, endogenous protein for DNMT3B9 was not detected in leukemic cells suggesting the unidentified RNA-related function(s) for DNMT3B9. In addition, we showed that DNMT3B9 protein lacks PWWP domain is less stable compared to other DNMT3B variants which contain PWWP domain through computational predictions and by cycloheximide half-life experiment. Taken together, we demonstrated the existence of novel leukemic-specific splice variant of DNMT3B and provide the evidence for the role of PWWP domain in the stability of DNMT3B. The findings reported here have relevance in epigenetic therapy, which is aimed to target the DNMT3B in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi:10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  2. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40. doi:10.1038/nature05919.

    Article  CAS  PubMed  Google Scholar 

  3. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem: a Eur J Chem Biol. 2011;12(2):206–22. doi:10.1002/cbic.201000195.

    Article  CAS  Google Scholar 

  4. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet TIG. 2000;16(4):168–74.

    Article  CAS  PubMed  Google Scholar 

  5. Duymich CE, Charlet J, Yang X, Jones PA, Liang G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun. 2016;7:11453. doi:10.1038/ncomms11453.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Esteller M. Cancer epigenetics for the 21st century: what’s next? Genes Cancer. 2011;2(6):604–6. doi:10.1177/1947601911423096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21(2):163–7. doi:10.1038/5947.

    Article  CAS  PubMed  Google Scholar 

  8. Laird PW, Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3:1487–95.

    Article  CAS  PubMed  Google Scholar 

  9. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20. doi:10.1038/890.

    Article  CAS  PubMed  Google Scholar 

  10. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22(2):480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Herault Y, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science. 2016;354(6314):909–12. doi:10.1126/science.aah5143.

    Article  CAS  PubMed  Google Scholar 

  12. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279(26):27816–23. doi:10.1074/jbc.M400181200.

    Article  CAS  PubMed  Google Scholar 

  13. Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA methyltransferases. Adv Exp Med Biol. 2016;945:63–86. doi:10.1007/978-3-319-43624-1_4.

    Article  PubMed  Google Scholar 

  14. Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol. 2004;24(20):9048–58. doi:10.1128/MCB.24.20.9048-9058.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285(34):26114–20. doi:10.1074/jbc.M109.089433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, et al. Structural and histone binding ability characterizations of human PWWP domains. PLoS ONE. 2011;6(6):e18919. doi:10.1371/journal.pone.0018919.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1:2. doi:10.1186/1750-1172-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA. 1999;96(25):14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ostler KR, Davis EM, Payne SL, Gosalia BB, Exposito-Cespedes J, Le Beau MM, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene. 2007;26(38):5553–63. doi:10.1038/sj.onc.1210351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47(5):469–78. doi:10.1038/ng.3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gordon CA, Hartono SR, Chedin F. Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS ONE. 2013;8(7):e69486. doi:10.1371/journal.pone.0069486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci USA. 2002;99(15):10060–5. doi:10.1073/pnas.152121799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen T, Ueda Y, Dodge JE, Wang Z, Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003;23(16):5594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Wang J, Sun S, Rodriguez M, Yue P, Jang SJ, et al. A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in non-small cell lung cancer. Int J Oncol. 2006;29(1):201–7.

    CAS  PubMed  Google Scholar 

  26. Wang J, Walsh G, Liu DD, Lee JJ, Mao L. Expression of Delta DNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer. Cancer Res. 2006;66(17):8361–6. doi:10.1158/0008-5472.CAN-06-2031.

    Article  CAS  PubMed  Google Scholar 

  27. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–31. doi:10.1093/nar/gkh468/suppl_2/W526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins. 2003;50(3):437–50. doi:10.1002/prot.10286.

    Article  CAS  PubMed  Google Scholar 

  29. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10. doi:10.1093/nar/gkm290.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eswar N, Eramian D, Webb B, Shen MY, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2008;426:145–59. doi:10.1007/978-1-60327-058-8_8.

    Article  CAS  PubMed  Google Scholar 

  31. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. doi:10.1146/annurev-biochem-051410-092902.

    Article  CAS  PubMed  Google Scholar 

  32. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.

    CAS  PubMed  Google Scholar 

  33. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 1998;95(12):6870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene. 2015;34(1):1–14. doi:10.1038/onc.2013.570.

    Article  PubMed  Google Scholar 

  35. Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  36. Gopalakrishnan S, Van Emburgh BO, Shan J, Su Z, Fields CR, Vieweg J, et al. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res MCR. 2009;7(10):1622–34. doi:10.1158/1541-7786.MCR-09-0018.

    Article  CAS  PubMed  Google Scholar 

  37. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27(11):2291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67. doi:10.1101/gr.147942.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42. doi:10.1038/ng.2443.

    Article  CAS  PubMed  Google Scholar 

  40. Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33(46):5311–8. doi:10.1038/onc.2013.533.

    Article  CAS  PubMed  Google Scholar 

  41. Hayette S, Thomas X, Jallades L, Chabane K, Charlot C, Tigaud I, et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS ONE. 2012;7(12):e51527. doi:10.1371/journal.pone.0051527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanley RF, Steidl U. Ectopic DNMT3B expression delays leukemogenesis. Blood. 2016;127(12):1525–6. doi:10.1182/blood-2016-01-692137.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. 2011;332(6031):848–52. doi:10.1126/science.1203919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu C, Sawada K, Zhang X, Cheng X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nature Struct Biol. 2002;9(3):217–24. doi:10.1038/nsb759.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Slater LM, Allen MD, Bycroft M. Structural variation in PWWP domains. J Mol Biol. 2003;330(3):571–6.

    Article  CAS  PubMed  Google Scholar 

  46. Qin S, Min J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci. 2014;39(11):536–47. doi:10.1016/j.tibs.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  47. Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BC, Wade H, et al. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics MCP. 2014;13(11):2883–95. doi:10.1074/mcp.M114.038224.

    Article  CAS  PubMed  Google Scholar 

  48. Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, et al. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol. 2012;32(17):3479–85. doi:10.1128/MCB.00389-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sankaran SM, Wilkinson AW, Elias JE, Gozani O. A PWWP domain of Histone-Lysine N-Methyltransferase NSD2 Binds to Dimethylated Lys-36 of Histone H3 and Regulates NSD2 function at chromatin. J Biol Chem. 2016;291(16):8465–74. doi:10.1074/jbc.M116.720748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stec I, Nagl SB, van Ommen GJ, den Dunnen JT. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett. 2000;473(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  51. Vezzoli A, Bonadies N, Allen MD, Freund SM, Santiveri CM, Kvinlaug BT, et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol. 2010;17(5):617–9. doi:10.1038/nsmb.1797.

    Article  CAS  PubMed  Google Scholar 

  52. Kang ES, Park CW, Chung JH. Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem Biophys Res Commun. 2001;289(4):862–8. doi:10.1006/bbrc.2001.6057.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma S, De Carvalho DD, Jeong S, Jones PA, Liang G. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 2011;7(2):e1001286. doi:10.1371/journal.pgen.1001286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ge YZ, Pu MT, Gowher H, Wu HP, Ding JP, Jeltsch A, et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem. 2004;279(24):25447–54. doi:10.1074/jbc.M312296200.

    Article  CAS  PubMed  Google Scholar 

  55. van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, et al. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenet Chromatin. 2013;6(1):12. doi:10.1186/1756-8935-6-12.

    Article  Google Scholar 

  56. Brinkman BM. Splice variants as cancer biomarkers. Clin Biochem. 2004;37(7):584–94. doi:10.1016/j.clinbiochem.2004.05.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of Sudhakar Baluchamy Laboratory for the technical assistance and helpful discussion. We especially thank Dr. Arunkumar Dhayalan for critical reading of the manuscript.

Funding

This study was funded by Science and Engineering Research Board (SERB)—India, and SB/EMEQ-038/2013 to Dr. Sudhakar Baluchamy and Department of Biotechnology (DBT), India, for Prachi Singh and Sarvagalla Sailu fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Baluchamy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Sailu, S., Palchamy, E. et al. Identification of a novel leukemic-specific splice variant of DNMT3B and its stability. Med Oncol 34, 145 (2017). https://doi.org/10.1007/s12032-017-1008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1008-0

Keywords

Navigation