Skip to main content

Advertisement

Log in

Intra-articular benign bone lesions treated with Magnetic Resonance-guided Focused Ultrasound (MRgFUS): imaging follow-up and clinical results

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Purpose of this study was to evaluate the employment of MRI-guided Focused Ultrasound (MRgFUS) for treatment of intra-articular benign bone lesions as alternative to surgery, and to monitor the success of the treatment on CT and MRI images. From March 2011 to August 2013, 14 intra-articular benign bone lesions were treated with MRgFUS. All patients were studied by CT and MR imaging. Pain was measured using the visual analogue scale (VAS) before and after treatment (6 and 12 months). All patients in our series demonstrated regression in painful symptomatology during screening. A significant drop in the mean VAS pain score (from 7.8 to 0.6) was observed at 12-month follow-up, and pain medication was no longer needed after treatment. No complications were observed. Three diagnostic imaging signs were found suggesting absence of biological activity and confirming the clinical findings: calcification of the treated lesion, lack of contrast enhancement and disappearance of bone oedema around the lesions. Conclusion: the employment of MRgFUS is safe and effective in the treatment of intra-articular benign bone lesions. The clinical outcome is satisfactory, and the success of the treatment is confirmed by diagnostic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farfalli GL, Slullitel PA, Muscolo DL, Ayerza MA, Aponte-Tinao LA. What happens to the articular surface after curettage for epiphyseal chondroblastoma?. A Report on Functional Results: Arthritis, and Arthroplasty. Clin Orthop Relat Res; 2016.

    Google Scholar 

  2. Aponte-Tinao L, Ayerza MA, Muscolo DL, Farfalli GL. Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteosarcoma of the knee. Clin Orthop Relat Res. 2015;473(5):1789–96. doi:10.1007/s11999-014-4028-5.

    Article  PubMed  Google Scholar 

  3. Thawait SK, Thawait GK, Frassica FJ, Andreisek G, Carrino JA, Chhabra A. A systematic approach to magnetic resonance imaging evaluation of epiphyseal lesions. Magn Reson Imaging. 2013;31(3):418–31.

    Article  PubMed  Google Scholar 

  4. Mellado JM, Bencardino JT, Pérez del Palomar L. Magnetic resonance imaging features of the discrete epiphyseal radiolucency: a problem-solving approach to differential diagnosis. Curr Probl Diagn Radiol. 2008;37(6):243–61.

    Article  PubMed  Google Scholar 

  5. Nishio J, Arashiro Y, Mori S, Iwasaki H, Naito M. Periosteal chondroma of the distal tibia: computed tomography and magnetic resonance imaging characteristics and correlation with histological findings. Mol Clin Oncol. 2015;3(3):677–81. doi:10.3892/mco.2015.492.

    PubMed  PubMed Central  Google Scholar 

  6. Ferrari F, Arrigoni F, Miccoli A, Mascaretti S, Fascetti E, Mascaretti G, Barile A, Masciocchi C. Effectiveness of magnetic resonance-guided focused ultrasound surgery (MRgFUS) in the uterine adenomyosis treatment: technical approach and MRI evaluation. Radiol Med. 2016;121(2):153–61. doi:10.1007/s11547-015-0580-7.

    Article  PubMed  Google Scholar 

  7. Masciocchi C, Zugaro L, Arrigoni F, Gravina GL, Mariani S, La Marra A, et al. Radiofrequency ablation versus magnetic resonance guided focused ultrasound surgery for minimally invasive treatment of osteoid osteoma: a propensity score matching study. Eur Radiol. 2016;26:2472–81. doi:10.1007/s00330-015-4111-7.

    Article  PubMed  Google Scholar 

  8. Masciocchi C, Conchiglia A, Gregori LM, Arrigoni F, Zugaro L, Barile A. Critical role of HIFU in musculoskeletal interventions. Radiol Med. 2014;119(7):470–5.

    Article  PubMed  Google Scholar 

  9. Arrigoni F, Gregori LM, Zugaro L, Barile A, Masciocchi C. MRgFUS in the treatment of MSK lesions: a review based on the experience of the University of L’Aquila. Italy Review article. Translational Cancer Research. 2014;. doi:10.3978/j.issn.2218-676X.2014.10.04.

    Google Scholar 

  10. Masciocchi C, Arrigoni F, La Marra A, Mariani S, Zugaro L, Barile A. Treatment of focal benign lesions of the bone: MRgFUS and RFA. Br J Radiol. 2016;89:20150356. doi:10.1259/bjr.20150356.

    Article  PubMed  Google Scholar 

  11. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.

    Article  PubMed  Google Scholar 

  12. Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5.

    Article  PubMed  Google Scholar 

  13. Murad M, Bari V, Rafique MZ, Ashraf K. Periosteal desmoid. JPMA. 2007;57:44–7.

    Google Scholar 

  14. Maheshwari AV, Muro-Cacho CA, Temple HT. Knee lesion in a 62-year-old woman. Clin Orthop Relat Res. 2008;466(5):1262–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng K, Yu X, Xu S, Xu M. Periosteal chondroma of the femur: a case report and review of the literature. Oncol Lett. 2015;. doi:10.3892/ol.2015.2889.

    Google Scholar 

  16. Bertoni F, Bacchini P. Bone and soft tissue pathology: SC02-1 cartilage tumors. Pathology. 2014;46(Suppl 2):S5. doi:10.1097/01.PAT.0000454060.23525.07.

    Article  Google Scholar 

  17. Bauer TW, Dorfman HD. Intraosseous ganglion. A clinicopathologic study of 11 cases. Am J Surg Pathol. 1982;6:207–13.

    Article  CAS  PubMed  Google Scholar 

  18. Patel S, Agrawal A, Maheshwari R, Chauhan VD. Periosteal osteoblastoma of the pelvis: a rare case. Iran J Med Sci. 2015;40(1):77–80.

    PubMed  PubMed Central  Google Scholar 

  19. Marsh BW, Bonfiglio M, Brady LP, Enneking WF. Benign osteoblastoma: range of manifestations. J Bone Jt Surg Ser A. 1975;57(1):1–9.

    Article  CAS  Google Scholar 

  20. Bufkin WJ. The avulsive cortical irregularity. Am J Roentgenol Radium Ther Nucl Med. 1971;112(3):487–92.

    Article  CAS  PubMed  Google Scholar 

  21. Olvi Liliana G, Santini-Araujo E. Periosteal desmoid. In: Santini-Araujo E, Kalil RK, Bertoni F, Park Y-K, editors. Tumors and tumor-like lesions of bone. London: Springer; 2015.

    Google Scholar 

  22. Resnick D, Greenway G. Distal femoral cortical defects, irregularities and excavations. Radiology. 1982;143:345–54.

    Article  CAS  PubMed  Google Scholar 

  23. Tscholl PM, Biedert RM, Gal I. Cortical desmoids in adolescent top-level athletes. Acta Radiol Open. 2015;. doi:10.1177/2058460115580878.

    PubMed  PubMed Central  Google Scholar 

  24. Caranci F, Tedeschi E, Leone G, Reginelli A, Gatta G, Pinto A, Squillaci E, Briganti F, Brunese L. Errors in neuroradiology. Radiol Med. 2015;120(9):795–801. doi:10.1007/s11547-015-0564-7.

    Article  PubMed  Google Scholar 

  25. Regini E, Mariscotti G, Durando M, Ghione G, Luparia A, Campanino PP, Bianchi CC, Bergamasco L, Fonio P, Gandini G. Radiological assessment of breast density by visual classification (BI-RADS) compared to automated volumetric digital software (Quantra): implications for clinical practice. Radiol Med. 2014;119(10):741–9. doi:10.1007/s11547-014-0390-3.

    Article  PubMed  Google Scholar 

  26. Faletti R, Cassinis MC, Fonio P, Grasso A, Battisti G, Bergamasco L, Gandini G. Diffusion-weighted imaging and apparent diffusion coefficient values versus contrast-enhanced MR imaging in the identification and characterization of acute pyelonephritis. Eur Radiol. 2013;23(12):3501–8. doi:10.1007/s00330-013-2951-6.

    Article  PubMed  Google Scholar 

  27. Salvati F, Rossi F, Limbucci N, Pistoia ML, Barile A, Masciocchi C. Mucoid metaplastic-degeneration of anterior cruciate ligament. J Sports Med Phys Fitness. 2008;48(4):483–7.

    CAS  PubMed  Google Scholar 

  28. Ripani M, Continenza MA, Cacchio A, Barile A, Parisi A, De Paulis F. The ischiatic region: normal and MRI anatomy. J Sports Med Phys Fitness. 2006;46(3):468–75.

    CAS  PubMed  Google Scholar 

  29. Zappia M, Reginelli A, Russo A, D’Agosto GF, Di Pietto F, Genovese EA, Coppolino F, Brunese L. Long head of the biceps tendon and rotator interval. Musculoskelet Surg. 2013;97(Suppl 2):S99–108. doi:10.1007/s12306-013-0290-z.

    Article  PubMed  Google Scholar 

  30. Splendiani A, Perri M, Grattacaso G, Di Tunno V, Marsecano C, Panebianco L, Gennarelli A, Felli V, Varrassi M, Barile A, Di Cesare E, Masciocchi C, Gallucci M. Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med. 2016;121(1):38–44. doi:10.1007/s11547-015-0570-9.

    Article  PubMed  Google Scholar 

  31. Splendiani A, Ferrari F, Barile A, Masciocchi C, Gallucci M. Occult neural foraminal stenosis caused by association between disc degeneration and facet joint osteoarthritis: demonstration with dedicated upright MRI system. Radiol Med. 2014;119(3):164–74. doi:10.1007/s11547-013-0330-7.

    Article  PubMed  Google Scholar 

  32. Barile A, Limbucci N, Splendiani A, Gallucci M, Masciocchi C. Spinal injury in sport. Eur J Radiol. 2007;62(1):68–78.

    Article  PubMed  Google Scholar 

  33. Barile A, Lanni G, Conti L, Mariani S, Calvisi V, Castagna A, Rossi F, Masciocchi C. Lesions of the biceps pulley as cause of anterosuperior impingement of the shoulder in the athlete: potentials and limits of MR arthrography compared with arthroscopy. Radiol Med. 2013;118(1):112–22.

    Article  CAS  PubMed  Google Scholar 

  34. Barile A, Conti L, Lanni G, Calvisi V, Masciocchi C. Evaluation of medial meniscus tears and meniscal stability: weight-bearing MRI vs arthroscopy. Eur J Radiol. 2013;82(4):633–9. doi:10.1016/j.ejrad.2012.10.018.

    Article  PubMed  Google Scholar 

  35. Masciocchi C, Barile A, Lelli S, Calvisi V. Magnetic Resonance Imaging (MRI) and arthro-MRI in the evaluation of the chondral pathology of the knee joint. Radiol Med. 2004;108(3):149–58.

    PubMed  Google Scholar 

  36. Barile A, Regis G, Masi R, Maggiori M, Gallo A, Faletti C, Masciocchi C. Musculoskeletal tumours: preliminary experience with perfusion MRI. RadiolMed. 2007;112(4):550–61.

    CAS  Google Scholar 

  37. Masciocchi C, Lanni G, Conti L, Conchiglia A, Fascetti E, Flamini S, Coletti G, Barile A. Soft-tissue inflammatory myofibroblastic tumors (IMTs) of the limbs: potential and limits of diagnostic imaging. Skeletal Radiol. 2012;41(6):643–9.

    Article  PubMed  Google Scholar 

  38. Cazzato RL, Garnon J, Ramamurthy N, Koch G, Tsoumakidou G, Caudrelier J, Arrigoni F, Zugaro L, Barile A, Masciocchi C, Gangi A. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol. 2016;33(12):140. doi:10.1007/s12032-016-0848-3.

    Article  PubMed  Google Scholar 

  39. Barile A, La Marra A, Arrigoni F, Mariani S, Zugaro L, Splendiani A, Di Cesare E, Reginelli A, Zappia M, Brunese L, Duka E, Carrafiello G, Masciocchi C. Anaesthetics, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol. 2016;89:20150355. doi:10.1259/bjr.20150355.

    Article  PubMed  Google Scholar 

  40. Zoccali C, Rossi B, Zoccali G, Barbarino E, Gregori L, Barile A, Masciocchi C. A new technique for biopsy of soft tissue neoplasms: a preliminary experience using MRI to evaluate bleeding. Minerva Med. 2015;106(2):117–20.

    CAS  PubMed  Google Scholar 

  41. Carrafiello G, Fontana F, Mangini M, Ierardi AM, Cotta E, Floridi C, Piacentino F, Fugazzola C. Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med. 2012;117(8):1386–97.

    Article  CAS  PubMed  Google Scholar 

  42. Palussière J, Pellerin-Guignard A, Descat E, Cornélis F, Dixmérias F. Radiofrequency ablation of bone tumours. Diagn Interv Imaging. 2012;93(9):680–4. doi:10.1016/j.diii.2012.06.008.

    Article  Google Scholar 

  43. Poulou LS. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol. 2015;7(8):1054. doi:10.4254/wjh.v7.i8.1054.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rehnitz C, Sprengel SD, Lehner B, Ludwig K, Omlor G, Merle C, et al. CT-guided radiofrequency ablation of osteoid osteoma: correlation of clinical outcome and imaging features. Diagn Interv Radiol. 2013;19(4):330.

    PubMed  Google Scholar 

  45. Fuchs S, Gebauer B, Stelter L, Schäfer ML, Renz DM, Melcher I, et al. Postinterventional MRI findings following MRI-guided laser ablation of osteoid osteoma. Eur J Radiol. 2014;83(4):696–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Angela Martella for translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Arrigoni.

Ethics declarations

Conflict of interest

None.

Informed consent

All procedures performed in these studies were in accordance with the Helsinki Declaration and its later amendments; an informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrigoni, F., Barile, A., Zugaro, L. et al. Intra-articular benign bone lesions treated with Magnetic Resonance-guided Focused Ultrasound (MRgFUS): imaging follow-up and clinical results. Med Oncol 34, 55 (2017). https://doi.org/10.1007/s12032-017-0904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0904-7

Keywords

Navigation