Oncolytic viruses: emerging options for the treatment of breast cancer

Abstract

Breast cancer (BC) is the most common type of cancer among women and is the second most common cause of cancer-related deaths, following lung cancer. Severe toxicity associated with a long-term use of BC chemo- and radiotherapy makes it essential to look for newer therapeutics. Additionally, molecular heterogeneity at both intratumoral and intertumoral levels among BC subtypes is known to result in a differential response to standard therapeutics. Oncolytic viruses (OVs) have emerged as one of the most promising treatment options for BC. Many preclinical and clinical studies have shown that OVs are effective in treating BC, both as a single therapeutic agent and as a part of combination therapies. Combination therapies involving multimodal therapeutics including OVs are becoming popular as they allow to achieve the synergistic therapeutic effects, while minimizing the associated toxicities. Here, we review the OVs for BC therapy in preclinical studies and in clinical trials, both as a monotherapy and as part of a combination therapy. We also briefly discuss the potential therapeutic targets for BC, as these are likely to be critical for the development of new OVs.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. 2.

    Hunter P. The fourth front against cancer. EMBO Rep. 2011;12(8):769–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016;5(1):e1115641.

    Article  PubMed  Google Scholar 

  4. 4.

    Garber K. China approves world’s first oncolytic. J Natl Cancer Inst. 2006;98(5):298–300.

    Article  PubMed  Google Scholar 

  5. 5.

    Gholami S, Marano A, Chen NG, Aguilar RJ, Frentzen A, Chen CH, et al. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res Treat. 2014;148(3):489–99.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: How special are they? Mol Oncol. 2010;4(3):192–208.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Polyak K. Heterogeneity in breast cancer. J Clin Investig. 2011;121(10):3786–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Perez EA. Breast cancer management: opportunities and barriers to an individualized approach. Oncologist. 2011;16(Supplement 1):20–2.

    Article  PubMed  Google Scholar 

  10. 10.

    Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16:R48.

    Article  Google Scholar 

  11. 11.

    Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta Rev Cancer. 2010;1805(1):105–17.

    CAS  Article  Google Scholar 

  15. 15.

    Merlo LMF, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924–35.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Davis BW, Zava DT, Locher GW, Goldhirsch A, Hartmann WH. Receptor heterogeneity of human breast cancer as measured by multiple intratumoral assays of estrogen and progesterone receptor. Eur J Cancer Clin Oncol. 1984;20(3):375–82.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Babayan A, Hannemann J, Spotter J, Muller V, Pantel K, Joosse SA. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS ONE. 2013;8(9):e75038.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lumachi F, Luisetto G, Basso SM, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast cancer. Curr Med Chem. 2011;18(4):513–22.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, et al. Trial watch—immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016;5(2):e1115942.

    Article  PubMed  Google Scholar 

  20. 20.

    Venur V, Leone J. Targeted therapies for brain metastases from breast cancer. Int J Mol Sci. 2016;17(9):1543.

    Article  PubMed Central  Google Scholar 

  21. 21.

    Errington F, White CL, Twigger KR, Rose A, Scott K, Steele L, et al. Inflammatory tumour cell killing by oncolytic reovirus for the treatment of melanoma. Gene Ther. 2008;15(18):1257–70.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett. 2001;172(1):27–36.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Dupressoir T, Vanacker JM, Cornells JJ, Duponchel N, Rommelaere J. Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res. 1989;49(12):3203–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Anderson BD, Nakamura T, Russell SJ, Peng KW. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004;64(14):4919–26.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Iankov ID, Msaouel P, Allen C, Federspiel MJ, Bulur PA, Dietz AB, et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat. 2010;122(3):745–54.

    Article  PubMed  Google Scholar 

  26. 26.

    McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM, et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat. 2006;99(2):177–84.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe. 2014;15(3):260–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kim M. Replicating poxviruses for human cancer therapy. J Microbiol. 2015;53(4):209–18.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cody JJ, Hurst DR. Promising oncolytic agents for metastatic breast cancer treatment. Oncolytic Virother. 2015;4:63–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bramante S, Koski A, Liikanen I, Vassilev L, Oksanen M, Siurala M, et al. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. Oncoimmunology. 2016;5(2):e1078057.

    Article  PubMed  Google Scholar 

  31. 31.

    Hartkopf AD, Fehm T, Wallwiener D, Lauer UM. Oncolytic virotherapy of breast cancer. Gynecol Oncol. 2011;123(1):164–71.

    Article  PubMed  Google Scholar 

  32. 32.

    Dong X, Qu W, Ma S, Zhu Z, Zheng C, He A, et al. Potent antitumoral effects of targeted promoter-driven oncolytic adenovirus armed with Dm-dNK for breast cancer in vitro and in vivo. Cancer Lett. 2013;328(1):95–103.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Seubert CM, Stritzker J, Hess M, Donat U, Sturm JB, Chen N, et al. Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a beta-galactosidase-activatable prodrug seco-analog of duocarmycin SA. Cancer Gene Ther. 2011;18(1):42–52.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Leveille S, Samuel S, Goulet M-L, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther. 2011;18(6):435–43.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007;67(20):10038–46.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wu Y, He J, An Y, Wang X, Liu Y, Yan S, et al. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. J Pharmacol Sci. 2015;24–30.

  37. 37.

    Fernandez M, Porosnicu M, Markovic D, Barber GN. Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol. 2002;76(2):895–904.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Liu R, Varghese S, Rabkin SD. Oncolytic herpes simplex virus vector therapy of breast cancer in C3(1)/SV40 T-antigen transgenic mice. Cancer Res. 2005;65(4):1532–40.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Sarkar D, Su Z-Z, Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci USA. 2005;102(39):14034–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhu W, Zhang H, Shi Y, Song M, Zhu B, Wei L. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther. 2014;14(11):1016–23.

    Article  Google Scholar 

  41. 41.

    Gazitt Y. TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia. 1999;13(11):1817–24.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res. 2001;7(5):1362–9.

    CAS  PubMed  Google Scholar 

  43. 43.

    Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420–30.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA. 2000;97(4):1754–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Nielsen LL, Dell J, Maxwell E, Armstrong L, Maneval D, Catino JJ. Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 1996;4(2):129–38.

    Google Scholar 

  46. 46.

    Roth JA. Adenovirus p53 gene therapy. Expert Opin Biol Ther. 2006;6(1):55–61.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci USA. 2013;110(14):E1291–300.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zeh HJ, Downs-Canner S, McCart JA, Guo ZS, Rao UNM, Ramalingam L, et al. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther. 2015;23(1):202–14.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Hemminki O, Parviainen S, Juhila J, Turkki R, Linder N, Lundin J, et al. Immunological data from cancer patients treated with Ad5/3-E2F-DELTA24-GMCSF suggests utility for tumor immunotherapy. Oncotarget. 2015;6(6):4467–81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Gollamudi R, Ghalib MH, Desai KK, Chaudhary I, Wong B, Einstein M, et al. Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Investig N Drugs. 2010;28(5):641–9.

    Article  Google Scholar 

  51. 51.

    Pesonen S, Diaconu I, Cerullo V, Escutenaire S, Raki M, Kangasniemi L, et al. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int J Cancer. 2012;130(8):1937–47.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Nokisalmi P, Pesonen S, Escutenaire S, Särkioja M, Raki M, Cerullo V, et al. Oncolytic adenovirus ICOVIR-7 in patients with advanced and refractory solid tumors. Clin Cancer Res. 2010;16(11):3035–43.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther. 2010;18(2):429–34.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Li J-L, Liu H-L, Zhang X-R, Xu J-P, Hu W-K, Liang M, et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther. 2009;16(3):376–82.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Laurie SA, Bell JC, Atkins HL, Roach J, Bamat MK, O’Neil JD, et al. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin Cancer Res. 2006;12(8):2555–62.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Nakao A, Takeda S, Shimoyama S, Kasuya H, Kimata H, Teshigahara O, et al. Clinical experiment of mutant herpes simplex virus HF10 therapy for cancer. Curr Cancer Drug Targets. 2007;7(2):169–74.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Hu JCC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A, et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther. 2011;19(9):1737–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nemunaitis J, Senzer N, Sarmiento S, Zhang Y-A, Arzaga R, Sands B, et al. A phase I trial of intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer Gene Ther. 2007;14(11):885–93.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Das S, Sondarva G, Viswakarma N, Nair RS, Osipo C, Tzivion G, et al. Human epidermal growth factor receptor 2 (HER2) impedes MLK3 kinase activity to support breast cancer cell survival. J Biol Chem. 2015;290(35):21705–12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Xu J, Chen Y, Olopade OI. MYC and breast cancer. Genes Cancer. 2010;1(6):629–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Latta EK, Tjan S, Parkes RK, O’Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15(12):1318–25.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Aulmann S, Bentz M, Sinn HP. C-myc oncogene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2002;74(1):25–31.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Zhang H, Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, et al. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene. 1998;16(13):1713–21.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG. Cyclins and cell cycle control in cancer and disease. Genes Cancer. 2012;3(11–12):649–57.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB. Cyclin E, a potential prognostic marker for breast cancer. Cancer Res. 1994;54(2):380–5.

    CAS  PubMed  Google Scholar 

  68. 68.

    Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–47.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005; 23(8):1616–22.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol. 2012;84(2):137–46.

    Article  PubMed  Google Scholar 

  71. 71.

    Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol (Lausanne). 2015;6(April):59.

    Google Scholar 

  72. 72.

    Khan M, Biswas D, Ghosh M, Mandloi S, Chakrabarti S, Chakrabarti P. mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discov. 2015;1(July):15016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res. 2002;8(1):221–32.

    CAS  PubMed  Google Scholar 

  74. 74.

    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 2005;117(4):538–50.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN, et al. Anti-CTLA-4 therapy results in higher CD4 + ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA. 2009;106(8):2729–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Zhang Y-Q, Tsai Y-C, Monie A, Wu T-C, Hung C-F. Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy. Mol Ther. 2010;18(4):692–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–88.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124(4):767–82.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Seet BT, Johnston JBB, Brunetti CR, Barrett JW, Everett H, Cameron C, et al. Poxviruses and immune evasion. Annu Rev Immunol. 2003;21(1):377–423.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Zhang T, Suryawanshi YR, Kordish DH, Woyczesczyk HM, Jeng D, Essani K. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice. Virus Genes. 2016. doi:10.1007/s11262-016-1402-2.

    Google Scholar 

  84. 84.

    Buijs PR, Verhagen JH, van Eijck CH, van den Hoogen BG. Oncolytic viruses: from bench to bedside with a focus on safety. Hum Vaccines Immunother. 2015;11(7):1573–84.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Rob Eversole, David Jeng, Sandhya Hasure and Farzad Razi for editorial comments. Funding was provided by Western Michigan University Fund 23.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karim Essani.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suryawanshi, Y.R., Zhang, T. & Essani, K. Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol 34, 43 (2017). https://doi.org/10.1007/s12032-017-0899-0

Download citation

Keywords

  • Oncolytic virus
  • Breast cancer
  • Targeted therapy
  • Tumor microenvironment
  • Combination therapy