Medical Oncology

, 34:26 | Cite as

KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma

  • Jonas CicenasEmail author
  • Linas Tamosaitis
  • Kotryna Kvederaviciute
  • Ricardas Tarvydas
  • Gintare Staniute
  • Karthik Kalyan
  • Edita Meskinyte-Kausiliene
  • Vaidotas Stankevicius
  • Mindaugas Valius
Review Article


Cancers are the group of diseases, which arise because of the uncontrolled behavior of some of the genes in our cells. There are possibilities of gene amplifications, overexpressions, deletions and other anomalies which might lead to the development and spread of cancer. One of the most dangerous ways to the cancers is the mutations of the genes. The mutated genes can start unstoppable proliferation of cells, their uncontrolled motility, protection from apoptosis, the DNA mutation enhancement as well as other anomalies, leading to the cancer. This review focuses on the genes, which are frequently mutated in various cancers and are known to be important in the advance and progression of colorectal cancer and melanoma, namely KRAS, NRAS and BRAF.


KRAS NRAS BRAF GTPase Kinase Melanoma Colorectal cancer Squamous cell anal cancer Mutation 



Part of this research was funded by Scientific Council of Lithuania (Scientific team Project #MIP-033/2014); therefore, we thank the organization. Jonas Cicenas would also like to thank Mauro Delorenzi for scientific inspiration.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Society AAC. American Cancer Society. Cancer Facts & Figures 2016. 2016.
  2. 2.
    Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196(2):189–201. doi: 10.1083/jcb.201103008.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA. 1982;79(16):4848–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 a resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990;9(8):2351–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Colicelli J. Human RAS superfamily proteins and related GTPases. Science’s STKE: signal transduction knowledge environment. 2004;2004(250):RE13. doi: 10.1126/stke.2502004re13.PubMedPubMedCentralGoogle Scholar
  6. 6.
  7. 7.
    Ras superfamily small G proteins: biology and mechanisms 1: general features, signaling. Wien: Springer; 2014.Google Scholar
  8. 8.
    Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans. 2005;33(Pt 4):639–42. doi: 10.1042/BST0330639.PubMedCrossRefGoogle Scholar
  9. 9.
    Birsa N, Norkett R, Higgs N, Lopez-Domenech G, Kittler JT. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. Biochem Soc Trans. 2013;41(6):1525–31. doi: 10.1042/BST20130234.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanna MGT, Mela I, Wang L, Henderson RM, Chapman ER, Edwardson JM, et al. Sar1 GTPase activity is regulated by membrane curvature. J Biol Chem. 2016;291(3):1014–27. doi: 10.1074/jbc.M115.672287.PubMedCrossRefGoogle Scholar
  11. 11.
    Mott HR, Owen D. Structures of Ras superfamily effector complexes: what have we learnt in two decades? Crit Rev Biochem Mol Biol. 2015;50(2):85–133. doi: 10.3109/10409238.2014.999191.PubMedCrossRefGoogle Scholar
  12. 12.
    Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294(5545):1299–304. doi: 10.1126/science.1062023.PubMedCrossRefGoogle Scholar
  13. 13.
    Biou V, Cherfils J. Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry. 2004;43(22):6833–40. doi: 10.1021/bi049630u.PubMedCrossRefGoogle Scholar
  14. 14.
    Olson MF, Marais R. Ras protein signalling. Semin Immunol. 2000;12(1):63–73. doi: 10.1006/smim.2000.0208.PubMedCrossRefGoogle Scholar
  15. 15.
    Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–51. doi: 10.1038/nrd4389.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDE delta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2011;14(2):148–58. doi: 10.1038/ncb2394.PubMedCrossRefGoogle Scholar
  17. 17.
    Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344–58. doi: 10.1177/1947601911411084.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal. 2013;25(10):1955–61. doi: 10.1016/j.cellsig.2013.04.009.PubMedCrossRefGoogle Scholar
  19. 19.
    Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35. doi: 10.1038/nature01148.PubMedCrossRefGoogle Scholar
  20. 20.
    Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582(14):2093–101. doi: 10.1016/j.febslet.2008.04.039.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang Y, Olufemi L, Wang MT, Nie D. Role of Rho GTPases in breast cancer. Front Biosci. 2008;13:759–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–49. doi: 10.1152/physrev.00059.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25. doi: 10.1038/nrm2728.PubMedCrossRefGoogle Scholar
  24. 24.
    Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(Pt 5):843–6. doi: 10.1242/jcs.01660.PubMedCrossRefGoogle Scholar
  25. 25.
    Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci USA. 1994;91(25):11963–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta. 2009;1795(2):110–6.PubMedGoogle Scholar
  27. 27.
    Rush MG, Drivas G, D’Eustachio P. The small nuclear GTPase Ran: how much does it run? Bioessays. 1996;18(2):103–12. doi: 10.1002/bies.950180206.PubMedCrossRefGoogle Scholar
  28. 28.
    Li HY, Cao K, Zheng Y. Ran in the spindle checkpoint: a new function for a versatile GTPase. Trends Cell Biol. 2003;13(11):553–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Kalab P, Heald R. The RanGTP gradient—a GPS for the mitotic spindle. J Cell Sci. 2008;121(Pt 10):1577–86. doi: 10.1242/jcs.005959.PubMedCrossRefGoogle Scholar
  30. 30.
    Doherty KJ, McKay C, Chan KK, El-Tanani MK. RAN GTPase as a target for cancer therapy: ran binding proteins. Curr Mol Med. 2011;11(8):686–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 2002;3(11):1035–41. doi: 10.1093/embo-reports/kvf221.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Dong C, Zhang X, Zhou F, Dou H, Duvernay MT, Zhang P, et al. ADP-ribosylation factors modulate the cell surface transport of G protein-coupled receptors. J Pharmacol Exp Ther. 2010;333(1):174–83. doi: 10.1124/jpet.109.161489.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Morgan C, Lewis PD, Hopkins L, Burnell S, Kynaston H, Doak SH. Increased expression of ARF GTPases in prostate cancer tissue. SpringerPlus. 2015;4:342. doi: 10.1186/s40064-015-1136-y.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Donaldson JG. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem. 2003;278(43):41573–6. doi: 10.1074/jbc.R300026200.PubMedCrossRefGoogle Scholar
  35. 35.
    Gosal G, Kochut KJ, Kannan N. ProKinO: an ontology for integrative analysis of protein kinases in cancer. PLoS ONE. 2011;6(12):e28782. doi: 10.1371/journal.pone.0028782.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. Oncologist. 2009;14(7):667–78. doi: 10.1634/theoncologist.2009-0009.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cicenas J, Urban P, Kung W, Vuaroqueaux V, Labuhn M, Wight E, et al. Phosphorylation of tyrosine 1248-ERBB2 measured by chemiluminescence-linked immunoassay is an independent predictor of poor prognosis in primary breast cancer patients. Eur J Cancer. 2006;42(5):636–45. doi: 10.1016/j.ejca.2005.11.012.PubMedCrossRefGoogle Scholar
  38. 38.
    Cicenas J. The potential role of the EGFR/ERBB2 heterodimer in breast cancer. Expert Opin Ther Pat. 2007;17(6):607–16. doi: 10.1517/13543776.17.6.607.CrossRefGoogle Scholar
  39. 39.
    Cicenas J, Urban P, Vuaroqueaux V, Labuhn M, Kung W, Wight E, et al. Increased level of phosphorylated akt measured by chemiluminescence-linked immunosorbent assay is a predictor of poor prognosis in primary breast cancer overexpressing ErbB-2. Breast Cancer Res. 2005;7(4):R394–401. doi: 10.1186/bcr1015.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cicenas J. The potential role of Akt phosphorylation in human cancers. Int J Biol Markers. 2008;23(1):1–9.PubMedGoogle Scholar
  41. 41.
    Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–18. doi: 10.1007/s00432-011-1039-4.PubMedCrossRefGoogle Scholar
  42. 42.
    Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers. 2014;6(4):2224–42. doi: 10.3390/cancers6042224.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015;3(10):135. doi: 10.3978/j.issn.2305-5839.2015.03.61.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mes-Masson AM, Witte ON. Role of the abl oncogene in chronic myelogenous leukemia. Adv Cancer Res. 1987;49:53–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Cicenas J. The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2016;142(9):1995–2012. doi: 10.1007/s00432-016-2136-1.PubMedCrossRefGoogle Scholar
  46. 46.
    Cicenas J, Cicenas E. Multi-kinase inhibitors, AURKs and cancer. Med Oncol. 2016;33(5):43. doi: 10.1007/s12032-016-0758-4.PubMedCrossRefGoogle Scholar
  47. 47.
    Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun. 2010;399(3):313–7. doi: 10.1016/j.bbrc.2010.07.092.PubMedCrossRefGoogle Scholar
  48. 48.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54. doi: 10.1038/nature00766.PubMedCrossRefGoogle Scholar
  49. 49.
    Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995;14(13):3136–45.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2011;44(2):133–9. doi: 10.1038/ng.1026.PubMedCrossRefGoogle Scholar
  51. 51.
    Nicos M, Krawczyk P, Jarosz B, Sawicki M, Michnar M, Trojanowski T, et al. Sensitive methods for screening of the MEK1 gene mutations in patients with central nervous system metastases of non-small cell lung cancer. Clin Transl Oncol. 2016;18(10):1039–43. doi: 10.1007/s12094-016-1483-3.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527–32. doi: 10.1038/370527a0.PubMedCrossRefGoogle Scholar
  53. 53.
    Eifert C, Wang X, Kokabee L, Kourtidis A, Jain R, Gerdes MJ, et al. A novel isoform of the B cell tyrosine kinase BTK protects breast cancer cells from apoptosis. Genes Chromosomes Cancer. 2013;52(10):961–75. doi: 10.1002/gcc.22091.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3(5):273–80. doi: 10.1124/mi.3.5.273.PubMedCrossRefGoogle Scholar
  55. 55.
    Jain K, Basu A. The multifunctional protein kinase C-epsilon in cancer development and progression. Cancers. 2014;6(2):860–78. doi: 10.3390/cancers6020860.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bosco R, Melloni E, Celeghini C, Rimondi E, Vaccarezza M, Zauli G. Fine tuning of protein kinase C (PKC) isoforms in cancer: shortening the distance from the laboratory to the bedside. Mini Rev Med Chem. 2011;11(3):185–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, et al. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J. 2008;27(18):2375–87. doi: 10.1038/emboj.2008.166.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Guin S, Theodorescu D. The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin. 2015;36(3):291–7. doi: 10.1038/aps.2014.129.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132(5):1133–45. doi: 10.1002/ijc.27711.PubMedCrossRefGoogle Scholar
  60. 60.
    Binefa G, Rodriguez-Moranta F, Teule A, Medina-Hayas M. Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol. 2014;20(22):6786–808. doi: 10.3748/wjg.v20.i22.6786.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Front Oncol. 2013;3:272. doi: 10.3389/fonc.2013.00272.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Thiel A, Ristimaki A. Toward a molecular classification of colorectal cancer: the role of BRAF. Front Oncol. 2013;3:281. doi: 10.3389/fonc.2013.00281.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic acids research. 2015;43(Database issue):D805–11. doi: 10.1093/nar/gku1075.PubMedCrossRefGoogle Scholar
  64. 64.
    Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi: 10.1038/nature11252.CrossRefGoogle Scholar
  65. 65.
    Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–74. doi: 10.1200/JCO.2009.23.3452.PubMedCrossRefGoogle Scholar
  67. 67.
    Mao C, Wu XY, Yang ZY, Threapleton DE, Yuan JQ, Yu YY, et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep. 2015;5:8065. doi: 10.1038/srep08065.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol. 2014;53(7):852–64. doi: 10.3109/0284186X.2014.895036.PubMedCrossRefGoogle Scholar
  69. 69.
    De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812–20. doi: 10.1001/jama.2010.1535.PubMedCrossRefGoogle Scholar
  70. 70.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.PubMedCrossRefGoogle Scholar
  71. 71.
    Safaee Ardekani G, Jafarnejad SM, Tan L, Saeedi A, Li G. The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS ONE. 2012;7(10):e47054. doi: 10.1371/journal.pone.0047054.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yaeger R, Cercek A, Chou JF, Sylvester BE, Kemeny NE, Hechtman JF, et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer. 2014;120(15):2316–24. doi: 10.1002/cncr.28729.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, et al. NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol. 2010;19(3):157–63. doi: 10.1097/PDM.0b013e3181c93fd1.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schirripa M, Cremolini C, Loupakis F, Morvillo M, Bergamo F, Zoratto F, et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2015;136(1):83–90. doi: 10.1002/ijc.28955.PubMedCrossRefGoogle Scholar
  75. 75.
    Janku F, Wheler JJ, Hong DS, Kurzrock R. Bevacizumab-based treatment in colorectal cancer with a NRAS Q61K mutation. Target Oncol. 2013;8(3):183–8. doi: 10.1007/s11523-013-0266-9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McCourt C, Dolan O, Gormley G. Malignant melanoma: a pictorial review. Ulster Med J. 2014;83(2):103–10.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Abbasi NR, Shaw HM, Rigel DS, Friedman RJ, McCarthy WH, Osman I, et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292(22):2771–6. doi: 10.1001/jama.292.22.2771.PubMedCrossRefGoogle Scholar
  78. 78.
    Milagre C, Dhomen N, Geyer FC, Hayward R, Lambros M, Reis-Filho JS, et al. A mouse model of melanoma driven by oncogenic KRAS. Cancer Res. 2010;70(13):5549–57. doi: 10.1158/0008-5472.CAN-09-4254.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Whitwam T, Vanbrocklin MW, Russo ME, Haak PT, Bilgili D, Resau JH, et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene. 2007;26(31):4563–70. doi: 10.1038/sj.onc.1210239.PubMedCrossRefGoogle Scholar
  80. 80.
    Yu X, Ambrosini G, Roszik J, Eterovic AK, Stempke-Hale K, Seftor EA, et al. Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line. Pigment Cell Melanoma Res. 2015;28(3):357–9. doi: 10.1111/pcmr.12345.PubMedCrossRefGoogle Scholar
  81. 81.
    Bhatia P, Friedlander P, Zakaria EA, Kandil E. Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med. 2015;3(2):24. doi: 10.3978/j.issn.2305-5839.2014.12.05.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26(11):1131–55. doi: 10.1101/gad.191999.112.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cruz F 3rd, Rubin BP, Wilson D, Town A, Schroeder A, Haley A, et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003;63(18):5761–6.PubMedGoogle Scholar
  84. 84.
    Spagnolo F, Ghiorzo P, Orgiano L, Pastorino L, Picasso V, Tornari E, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015;8:157–68. doi: 10.2147/OTT.S39096.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kim SY, Kim SN, Hahn HJ, Lee YW, Choe YB, Ahn KJ. Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma. J Am Acad Dermatol. 2015;72(6):1036–46. doi: 10.1016/j.jaad.2015.02.1113.PubMedCrossRefGoogle Scholar
  86. 86.
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20. doi: 10.1038/ng1054.PubMedCrossRefGoogle Scholar
  87. 87.
    Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122(2):342–8. doi: 10.1046/j.0022-202X.2004.22225.x.PubMedCrossRefGoogle Scholar
  88. 88.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86. doi: 10.1038/nrd3847.PubMedCrossRefGoogle Scholar
  89. 89.
    McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32. doi: 10.1016/S1470-2045(14)70012-9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Grob JJ, Amonkar MM, Karaszewska B, Schachter J, Dummer R, Mackiewicz A, et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 2015;16(13):1389–98. doi: 10.1016/S1470-2045(15)00087-X.PubMedCrossRefGoogle Scholar
  91. 91.
    Sharma SP. RAS mutations and the development of secondary tumours in patients given BRAF inhibitors. Lancet Oncology. 2011;13:e91.CrossRefGoogle Scholar
  92. 92.
    Administration USFaD. Approved drugs. Trametinib and Dabrafenib.
  93. 93.
    Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51. doi: 10.1016/S0140-6736(15)60898-4.PubMedCrossRefGoogle Scholar
  94. 94.
    Schadendorf D, Amonkar MM, Stroyakovskiy D, Levchenko E, Gogas H, de Braud F, et al. Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur J Cancer. 2015;51(7):833–40. doi: 10.1016/j.ejca.2015.03.004.PubMedCrossRefGoogle Scholar
  95. 95.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65. doi: 10.1016/S0140-6736(12)60868-X.PubMedCrossRefGoogle Scholar
  96. 96.
    PRNewswire. Binimetinib and encorafenib combination shows promising clinical activity and potential differentiated safety in BRAF-mutant melanoma.
  97. 97.
    Study comparing combination of LGX818 plus MEK162 versus vemurafenib and LGX818 monotherapy in BRAF mutant melanoma (COLUMBUS). NCT01909453.
  98. 98.
    Administration USFaD. Approved drugs. Sorafenib (NEXAVAR).
  99. 99.
    Mahalingam D, Malik L, Beeram M, Rodon J, Sankhala K, Mita A, et al. Phase II study evaluating the efficacy, safety, and pharmacodynamic correlative study of dual antiangiogenic inhibition using bevacizumab in combination with sorafenib in patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 2014;74(1):77–84. doi: 10.1007/s00280-014-2479-8.PubMedCrossRefGoogle Scholar
  100. 100.
    Eisen T, Marais R, Affolter A, Lorigan P, Robert C, Corrie P, et al. Sorafenib and dacarbazine as first-line therapy for advanced melanoma: phase I and open-label phase II studies. Br J Cancer. 2011;105(3):353–9. doi: 10.1038/bjc.2011.257.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Amaravadi RK, Schuchter LM, McDermott DF, Kramer A, Giles L, Gramlich K, et al. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases. Clin Cancer Res. 2009;15(24):7711–8. doi: 10.1158/1078-0432.CCR-09-2074.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27(17):2823–30. doi: 10.1200/JCO.2007.15.7636.PubMedCrossRefGoogle Scholar
  103. 103.
    Flaherty KT, Lee SJ, Zhao F, Schuchter LM, Flaherty L, Kefford R, et al. Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol. 2013;31(3):373–9. doi: 10.1200/JCO.2012.42.1529.PubMedCrossRefGoogle Scholar
  104. 104.
    Chin L, Merlino G, DePinho RA. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 1998;12(22):3467–81.PubMedCrossRefGoogle Scholar
  105. 105.
    Jafari M, Papp T, Kirchner S, Diener U, Henschler D, Burg G, et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol. 1995;121(1):23–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Papp T, Pemsel H, Zimmermann R, Bastrop R, Weiss DG, Schiffmann D. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J Med Genet. 1999;36(8):610–4.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.PubMedGoogle Scholar
  108. 108.
    Devitt B, Liu W, Salemi R, Wolfe R, Kelly J, Tzen CY, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24(4):666–72. doi: 10.1111/j.1755-148X.2011.00873.x.PubMedCrossRefGoogle Scholar
  109. 109.
    Jakob JA, Bassett RL Jr, Ng CS, Curry JL, Joseph RW, Alvarado GC, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23. doi: 10.1002/cncr.26724.PubMedCrossRefGoogle Scholar
  110. 110.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. doi: 10.1038/nature09626.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Joseph RW, Sullivan RJ, Harrell R, Stemke-Hale K, Panka D, Manoukian G, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35(1):66–72. doi: 10.1097/CJI.0b013e3182372636.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015;3(3):288–95. doi: 10.1158/2326-6066.CIR-14-0207.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Casadei Gardini A, Capelli L, Ulivi P, Giannini M, Freier E, Tamberi S, et al. KRAS, BRAF and PIK3CA status in squamous cell anal carcinoma (SCAC). PLoS ONE. 2014;9(3):e92071. doi: 10.1371/journal.pone.0092071.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Martin V, Zanellato E, Franzetti-Pellanda A, Molinari F, Movilia A, Paganotti A, et al. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. Histol Histopathol. 2014;29(4):513–21. doi: 10.14670/HH-29.10.513.PubMedGoogle Scholar
  115. 115.
    Lukan N, Strobel P, Willer A, Kripp M, Dinter D, Mai S, et al. Cetuximab-based treatment of metastatic anal cancer: correlation of response with KRAS mutational status. Oncology. 2009;77(5):293–9. doi: 10.1159/000259615.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jonas Cicenas
    • 1
    • 2
    • 3
    Email author
  • Linas Tamosaitis
    • 4
  • Kotryna Kvederaviciute
    • 5
  • Ricardas Tarvydas
    • 2
  • Gintare Staniute
    • 2
  • Karthik Kalyan
    • 2
    • 6
  • Edita Meskinyte-Kausiliene
    • 7
  • Vaidotas Stankevicius
    • 8
  • Mindaugas Valius
    • 3
  1. 1.Vetsuisse Faculty, Institute of Animal PathologyUniversity of BernBernSwitzerland
  2. 2.MAP Kinase ResourceBernSwitzerland
  3. 3.Proteomics CentreVilnius University Institute of BiochemistryVilniusLithuania
  4. 4.School of BiosciencesUniversity of KentCanterburyUK
  5. 5.Institute of BiotechnologyVilnius UniversityVilniusLithuania
  6. 6.The International Immunogenetics Information System (IMGT); Institut de Genitique Humaine (IGH), CNRSMontpellier Cedex 5France
  7. 7.Aleksandro Stulginskio UniversityAkademijaLithuania
  8. 8.Lithuania National Cancer InstituteVilniusLithuania

Personalised recommendations