Skip to main content

Advertisement

Log in

K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Nephroblastoma (Wilms tumor) is a kidney neoplasia, predominately occurring at very young age, resulting from the malignant transformation of renal stem cells. The Ras proto-oncogenes and B-Raf are members of an intracellular cascade pathway, which regulates cell growth and differentiation, and ultimately cancer development. Our objective was to determine the mutation rate and to measure the mRNA levels of the three Ras genes and of B-Raf in formalin-fixed paraffin-embedded tissue samples from 32 patients with nephroblastoma and 10 controls. No mutations were detected in the four studied genes among our Wilms tumors cases, while Ras and B-Raf expression was higher in malignant samples versus controls. Statistical analysis revealed a positive correlation of K-Ras (p < 0.001) and B-Raf (p = 0.006) with tumor size, a negative correlation of K-Ras (p = 0.041) and H-Ras (p = 0.033) with the percentage of tissue necrosis, and an association of N-Ras (p = 0.047) and B-Raf (p = 0.044) with tissue histology. From the above, we deduce that although Ras and B-Raf mutations are rare events in Wilms tumors, their expression pattern suggests that they play an important role in the development and progression of this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21:172–81.

    Article  CAS  PubMed  Google Scholar 

  2. van den Heuvel-Eibrink MM, Grundy P, Graf N, Pritchard-Jones K, Bergeron C, Patte C, et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: a collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms Tumor Study Groups. Pediatr Blood Cancer. 2008;50:1130–4.

    Article  PubMed  Google Scholar 

  3. Coppes MJ, Arnold M, Beckwith JB, Ritchey ML, D’Angio GJ, Green DM, et al. Factors affecting the risk of contralateral Wilms tumor development: a report from the National Wilms Tumor Study Group. Cancer. 1999;85:1616–25.

    Article  CAS  PubMed  Google Scholar 

  4. Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43:705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coppes MJ, Haber DA, Grundy PE. Genetic events in the development of Wilms’ tumor. N Engl J Med. 1994;331:586–90.

    Article  CAS  PubMed  Google Scholar 

  6. Knudson AG Jr, Strong LC. Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst. 1972;48:313–24.

    PubMed  Google Scholar 

  7. Satoh Y, Nakadate H, Nakagawachi T, Higashimoto K, Joh K, Masaki Z, et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer. 2006;95:541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315:642–5.

    Article  CAS  PubMed  Google Scholar 

  9. Ruteshouser EC, Huff V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet. 2004;129C:29–34.

    Article  PubMed  Google Scholar 

  10. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 1999;59:3880–2.

    CAS  PubMed  Google Scholar 

  11. Isidor B, Bourdeaut F, Lafon D, Plessis G, Lacaze E, Kannengiesser C, et al. Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. Eur J Hum Genet. 2013;21:784–7.

    Article  CAS  PubMed  Google Scholar 

  12. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23:7312–21.

    Article  CAS  PubMed  Google Scholar 

  13. Barbacid M. Ras genes. Annu Rev Biochem. 1987;56:779–827.

    Article  CAS  PubMed  Google Scholar 

  14. Grand RJ, Owen D. The biochemistry of ras p21. Biochem J. 1991;279(Pt 3):609–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiaris H, Spandidos D. Mutations of ras genes in human tumors (review). Int J Oncol. 1995;7:413–21.

    CAS  PubMed  Google Scholar 

  16. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vageli D, Kiaris H, Delakas D, Anezinis P, Cranidis A, Spandidos DA. Transcriptional activation of H-ras, K-ras and N-ras proto-oncogenes in human bladder tumors. Cancer Lett. 1996;107:241–7.

    Article  CAS  PubMed  Google Scholar 

  18. Mammas IN, Zafiropoulos A, Koumantakis E, Sifakis S, Spandidos DA. Transcriptional activation of H- and N-ras oncogenes in human cervical cancer. Gynecol Oncol. 2004;92:941–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lymbouridou R, Soufla G, Chatzinikola AM, Vakis A, Spandidos DA. Down-regulation of K-ras and H-ras in human brain gliomas. Eur J Cancer. 2009;45:1294–303.

    Article  CAS  PubMed  Google Scholar 

  20. Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 1996;27:101–25.

    CAS  PubMed  Google Scholar 

  21. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9:180–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    Article  CAS  PubMed  Google Scholar 

  23. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004;6:313–9.

    Article  CAS  PubMed  Google Scholar 

  24. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  25. Araujo PP, Marcello MA, Tincani AJ, Guilhen AC, Morari EC, Ward LS. mRNA BRAF expression helps to identify papillary thyroid carcinomas in thyroid nodules independently of the presence of BRAFV600E mutation. Pathol Res Pract. 2012;208:489–92.

    Article  CAS  PubMed  Google Scholar 

  26. Derdas SP, Soulitzis N, Balis V, Sakorafas GH, Spandidos DA. Expression analysis of B-Raf oncogene in V600E-negative benign and malignant tumors of the thyroid gland: correlation with late disease onset. Med Oncol. 2013;30:336.

    Article  PubMed  Google Scholar 

  27. Luo XN, Reddy JC, Yeyati PL, Idris AH, Hosono S, Haber DA, et al. The tumor suppressor gene WT1 inhibits ras-mediated transformation. Oncogene. 1995;11:743–50.

    CAS  PubMed  Google Scholar 

  28. Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 2010;120:3940–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu C, Wang S, Xu C, Tyler A, Li X, Andersson C, et al. WT1 enhances proliferation and impedes apoptosis in KRAS mutant NSCLC via targeting cMyc. Cell Physiol Biochem. 2015;35:647–62.

    Article  CAS  PubMed  Google Scholar 

  30. Clark PE, Polosukhina D, Love H, Correa H, Coffin C, Perlman EJ, et al. beta-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms’ tumors. Am J Pathol. 2011;179:3045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Breslow NE, Beckwith JB, Perlman EJ, Reeve AE. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr Blood Cancer. 2006;47:260–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chu A, Heck JE, Ribeiro KB, Brennan P, Boffetta P, Buffler P, et al. Wilms’ tumour: a systematic review of risk factors and meta-analysis. Paediatr Perinat Epidemiol. 2010;24:449–69.

    Article  PubMed  Google Scholar 

  33. Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet. 1998;79:268–73.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuzawa R, Reeve AE. Molecular pathology and epidemiology of nephrogenic rests and Wilms tumors. J Pediatr Hematol Oncol. 2007;29:589–94.

    Article  CAS  PubMed  Google Scholar 

  35. Huff V. Wilms tumor genetics. Am J Med Genet. 1998;79:260–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosom Cancer. 2008;47:461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, et al. Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet. 1994;7:440–7.

    Article  CAS  PubMed  Google Scholar 

  38. Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet. 1994;7:433–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ravenel JD, Broman KW, Perlman EJ, Niemitz EL, Jayawardena TM, Bell DW, et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J Natl Cancer Inst. 2001;93:1698–703.

    Article  CAS  PubMed  Google Scholar 

  40. Baird P, Wadey R, Cowell J. Loss of heterozygosity for chromosome region 11p15 in Wilms’ tumours is not related to HRAS gene transforming mutations. Oncogene. 1991;6:1147–9.

    CAS  PubMed  Google Scholar 

  41. Waber PG, Chen J, Nisen PD. Infrequency of ras, p53, WT1, or RB gene alterations in Wilms tumors. Cancer. 1993;72:3732–8.

    Article  CAS  PubMed  Google Scholar 

  42. Miao J, Kusafuka T, Fukuzawa M. Hotspot mutations of BRAF gene are not associated with pediatric solid neoplasms. Oncol Rep. 2004;12:1269–72.

    CAS  PubMed  Google Scholar 

  43. Zirn B, Samans B, Wittmann S, Pietsch T, Leuschner I, Graf N, et al. Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosom Cancer. 2006;45:565–74.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar S, Hand PH, Marsden HB, Kumar P, Thor A. Quantitation of enhanced expression of ras-oncogene product (p21) in childhood renal tumours. Anticancer Res. 1991;11:1657–62.

    CAS  PubMed  Google Scholar 

  45. Aoki I, Yanoma S, Misugi K, Sasaki Y, Kikyo S. Ras p21 expression in nephroblastoma group tumors. Acta Pathol Jpn. 1987;37:1903–7.

    CAS  PubMed  Google Scholar 

  46. Rowe DH, Huang J, Kayton ML, Thompson R, Troxel A, O’Toole KM, et al. Anti-VEGF antibody suppresses primary tumor growth and metastasis in an experimental model of Wilms’ tumor. J Pediatr Surg. 2000;35:30–2.

    Article  CAS  PubMed  Google Scholar 

  47. Celiker MY, Wang M, Atsidaftos E, Liu X, Liu YE, Jiang Y, et al. Inhibition of Wilms’ tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene. 2001;20:4337–43.

    Article  CAS  PubMed  Google Scholar 

  48. Yokoi A, McCrudden KW, Huang J, Kim ES, Soffer SZ, Frischer JS, et al. Human epidermal growth factor receptor signaling contributes to tumor growth via angiogenesis in her2/neu-expressing experimental Wilms’ tumor. J Pediatr Surg. 2003;38:1569–73.

    Article  PubMed  Google Scholar 

  49. Mackenzie GG, Bartels LE, Xie G, Papayannis I, Alston N, Vrankova K, et al. A novel Ras inhibitor (MDC-1016) reduces human pancreatic tumor growth in mice. Neoplasia. 2013;15:1184–95.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khodayari N, Mohammed KA, Goldberg EP, Nasreen N. EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene. Cancer Gene Ther. 2011;18:806–16.

    Article  CAS  PubMed  Google Scholar 

  51. Charette N, De Saeger C, Lannoy V, Horsmans Y, Leclercq I, Starkel P. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol Cancer. 2010;9:256.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng M, Tang H, Zhou Y, Zhou M, Xiong W, Zheng Y, et al. miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci. 2011;124:2997–3005.

    Article  CAS  PubMed  Google Scholar 

  53. Sunaga N, Shames DS, Girard L, Peyton M, Larsen JE, Imai H, et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol Cancer Ther. 2011;10:336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J, et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 2006;66:999–1006.

    Article  CAS  PubMed  Google Scholar 

  55. Chiappetta G, Basile A, Arra C, Califano D, Pasquinelli R, Barbieri A, et al. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein. J Clin Endocrinol Metab. 2012;97:E115–20.

    Article  CAS  PubMed  Google Scholar 

  56. Peretz D, Kimel N, Fujii DK, Neufeld G. Overexpression of basic fibroblast growth factor complementary DNA in Ha-ras-transformed cells correlates with a decreased incidence of tumor necrosis. Cancer Res. 1993;53:158–64.

    CAS  PubMed  Google Scholar 

  57. Arends MJ, McGregor AH, Wyllie AH. Apoptosis is inversely related to necrosis and determines net growth in tumors bearing constitutively expressed myc, ras, and HPV oncogenes. Am J Pathol. 1994;144:1045–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Spandidos DA, Sourvinos G, Tsatsanis C, Zafiropoulos A. Normal ras genes: their onco-suppressor and pro-apoptotic functions (review). Int J Oncol. 2002;21:237–41.

    CAS  PubMed  Google Scholar 

  59. Singh A, Sowjanya AP, Ramakrishna G. The wild-type Ras: road ahead. FASEB J. 2005;19:161–9.

    Article  CAS  PubMed  Google Scholar 

  60. Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L, et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell. 2014;25:243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet. 2001;29:25–33.

    Article  CAS  PubMed  Google Scholar 

  62. Luo F, Poulogiannis G, Ye H, Hamoudi R, Dong G, Zhang W, et al. Wild-type K-ras has a tumour suppressor effect on carcinogen-induced murine colorectal adenoma formation. Int J Exp Pathol. 2014;95:8–15.

    Article  CAS  PubMed  Google Scholar 

  63. Benet M, Dulman RY, Suzme R, de Miera EV, Vega ME, Nguyen T, et al. Wild type N-ras displays anti-malignant properties, in part by downregulating decorin. J Cell Physiol. 2012;227:2341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mar VJ, Wong SQ, Li J, Scolyer RA, McLean C, Papenfuss AT, et al. BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage. Clin Cancer Res. 2013;19:4589–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios A. Spandidos.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All procedures performed in our study involving human participants were in accordance with the ethical standards of the Research Committees of the University of Crete, and of "Ag. Sofia" and “G. Gennimatas” Hospitals, and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Written informed consent was obtained from the legal guardians of all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalpa, E., Gourvas, V., Soulitzis, N. et al. K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med Oncol 34, 6 (2017). https://doi.org/10.1007/s12032-016-0862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0862-5

Keywords

Navigation