Advertisement

Medical Oncology

, 33:106 | Cite as

Targeted molecular profiling of rare genetic alterations in colorectal cancer using next-generation sequencing

  • Mayank JauhriEmail author
  • Akanksha Bhatnagar
  • Satish Gupta
  • Yogender Shokeen
  • Sachin Minhas
  • Shyam Aggarwal
Original Paper

Abstract

Mutation frequencies of common genetic alterations in colorectal cancer have been in the spotlight for many years. This study highlights few rare somatic mutations, which possess the attributes of a potential CRC biomarker yet are often neglected. Next-generation sequencing was performed over 112 tumor samples to detect genetic alterations in 31 rare genes in colorectal cancer. Mutations were detected in 26/31 (83.9 %) uncommon genes, which together contributed toward 149 gene mutations in 67/112 (59.8 %) colorectal cancer patients. The most frequent mutations include KDR (19.6 %), PTEN (17 %), FBXW7 (10.7 %), SMAD4 (10.7 %), VHL (8 %), KIT (8 %), MET (7.1 %), ATM (6.3 %), CTNNB1 (4.5 %) and CDKN2A (4.5 %). RB1, ERBB4 and ERBB2 mutations were persistent in 3.6 % patients. GNAS, FGFR2 and FGFR3 mutations were persistent in 1.8 % patients. Ten genes (EGFR, NOTCH1, SMARCB1, ABL1, STK11, SMO, RET, GNAQ, CSF1R and FLT3) were found mutated in 0.9 % patients. Lastly, no mutations were observed in AKT, HRAS, MAP2K1, PDGFR and JAK2. Significant associations were observed between VHL with tumor site, ERBB4 and SMARCB1 with tumor invasion, CTNNB1 with lack of lymph node involvement and CTNNB1, FGFR2 and FGFR3 with TNM stage. Significantly coinciding mutation pairs include PTEN and SMAD4, PTEN and KDR, EGFR and RET, EGFR and RB1, FBXW7 and CTNNB1, KDR and FGFR2, FLT3 and CTNNB1, RET and RB1, ATM and SMAD4, ATM and CDKN2A, ERBB4 and SMARCB1. This study elucidates few potential colorectal cancer biomarkers, specifically KDR, PTEN, FBXW7 and SMAD4, which are found mutated in more than 10 % patients.

Keywords

Colorectal cancer Mutations Next-generation sequencing 

Notes

Acknowledgments

We thank the Department of Research at Sir Ganga Ram Hospital, Delhi, India, and Strand Life Sciences, Bangalore, India, and Mrs. Parul Takkar for their support. This study has been funded by Merck Serono, India.

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in this study.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi: 10.1002/ijc.29210.PubMedCrossRefGoogle Scholar
  2. 2.
    Kalia M. Biomarkers for personalized oncology: recent advances and future challenges. Metabolism. 2015;64(3):S16–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Network Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRefGoogle Scholar
  4. 4.
    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55(18):3964–8.PubMedGoogle Scholar
  5. 5.
    Loaiza-Bonilla A, Jensen C, Shroff S, Furth E, Bonilla-Reyes PA, Deik AF, et al. KDR mutation as a novel predictive biomarker of exceptional response to regorafenib in metastatic colorectal cancer. Cureus. 2016;8(2):e478. doi: 10.7759/cureus.478.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Dong G, Guo X, Fu X, Wan S, Zhou F, Myers RE, et al. Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci. 2012;103(3):561–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee SY, Haq F, Kim D, Jun C, Jo HJ, Ahn SM, Lee WS. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS One. 2014;9(3):e90459.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mockus SM, Potter CS, Stafford GA, Ananda G, Hinerfeld D, Tsongalis GJ. Targeting KDR mutations in lung adenocarcinoma. Cancer Res. 2015;75(15 Supplement):73–73.CrossRefGoogle Scholar
  9. 9.
    Silva IP, Salhi A, Giles KM, Vogelsang M, Han SW, Ismaili N, et al. Identification of a novel pathogenic germline KDR variant in melanoma. Clin Cancer Res. 2016;22(10):2377–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Sammarco I, Capurso G, Coppola L, Bonifazi AP, Cassetta S, Delle Fave G, et al. Expression of the proto-oncogene c-KIT in normal and tumor tissues from colorectal carcinoma patients. Int J Colorectal Dis. 2004;19(6):545–53.PubMedCrossRefGoogle Scholar
  11. 11.
    El-Serafi MM, Bahnassy AA, Ali NM, Eid SM, Kamel MM, Abdel-Hamid NA, Zekri ARN. The prognostic value of c-Kit, K-ras codon 12, and p53 codon 72 mutations in Egyptian patients with stage II colorectal cancer. Cancer. 2010;116(21):4954–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Zenali M. Retrospective review of MET gene mutations. Oncoscience. 2015;2(5):533.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Malapelle U, Pisapia P, Sgariglia R, Vigliar E, Biglietto M, Carlomagno C, et al. Less frequently mutated genes in colorectal cancer: evidences from next-generation sequencing of 653 routine cases. J Clin Pathol. 2016;69(9):767–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee JW, Soung YH, Seo SH, Kim SY, Park CH, Wang YP, et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Cancer Res. 2006;12(1):57–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Soung YH, Lee JW, Kim SY, Wang YP, Jo KH, Moon SW, et al. Somatic mutations of the ERBB4 kinase domain in human cancers. Int J Cancer. 2006;118(6):1426–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams CS, Bernard JK, Beckler MD, Almohazey D, Washington MK, Smith JJ, Frey MR. ERBB4 is over-expressed in human colon cancer and enhances cellular transformation. Carcinogenesis. 2015;36(7):710–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Cancer Lett. 2011;309(2):209–19.PubMedCrossRefGoogle Scholar
  18. 18.
    Jang JH, Shin KH, Park JG. Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res. 2001;61(9):3541–3.PubMedGoogle Scholar
  19. 19.
    Luo Y, Tsuchiya KD, Park DI, Fausel R, Kanngurn S, Welcsh P, et al. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene. 2013;32(16):2037–47.PubMedCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V, et al. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer. 2010;9(1):1.Google Scholar
  22. 22.
    Lian QF, Zhan XJ. Identification of differential gene expressions in colorectal cancer and polyp by cDNA microarray. World J Gastroenterol. 2012;18(6):570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lan YT, Jen-Kou L, Lin CH, et al. Mutations in the RAS and PI3 K pathways are associated with metastatic location in colorectal cancers. J Surg Oncol. 2015;111:905–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Day FL, Jorissen RN, Lipton L, et al. PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res. 2013;19:3285–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Berg M, Danielsen SA, Ahlquist T, Merok MA, et al. DNA sequence profiles of the colorectal cancer critical gene set KRAS-BRAF-PIK3CA-PTEN-TP53 related to age at disease onset. PLoS ONE. 2010;5(11):e13978.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell. 2008;133(3):403–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Rychahou PG, Jackson LN, Silva SR, et al. Targeted molecular therapy of the PI3 K pathway: therapeutic significance of PI3 K subunit targeting in colorectal carcinoma. Ann Surg. 2006;243(6):833–44.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Colakoglu T, Yildirim S, Kayaselcuk F, et al. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: is PTEN loss predictor of local recurrence? Am J Surg. 2008;195(6):719–25.PubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58(10):2087–90.PubMedGoogle Scholar
  31. 31.
    Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72(10):2457–67.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bai J, Gao J, Mao Z, Wang J, Li J, Li W, et al. Genetic mutations in human rectal cancers detected by targeted sequencing. J Hum Genet. 2015;60(10):589–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Cai ZX, Tang XD, Gao HL, Tang C, Nandakumar V, et al. APC, FBXW7, KRAS, PIK3CA, and TP53 gene mutations in human colorectal cancer tumors frequently detected by next-generation DNA sequencing. J Mol Genet Med. 2014;8. doi: 10.4172/1747-0862.1000145.
  34. 34.
    Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Lee KH, et al. Targeted sequencing of cancer-related genes in colorectal cancer using next-generation sequencing. PLoS ONE. 2013;8(5):e64271.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kuwai T, Kitadai Y, Tanaka S, Hiyama T, Tanimoto K, Chayama K. Mutation of the von Hippel-Lindau (VHL) gene in human colorectal carcinoma: association with cytoplasmic accumulation of hypoxia-inducible factor (HIF)-1α. Cancer Sci. 2004;95(2):149–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Nat. Cancer Inst. 2005;97(11):813–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Bougatef K, Ouerhani S, Moussa A, Kourda N, Coulet F, Colas C, et al. Prevalence of mutations in APC, CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer. Cancer Genet Cytogenet. 2008;187(1):12–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Luchtenborg M, Weijenberg MP, Wark PA, Saritas AM, Roemen GM, van Muijen GN, et al. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer. 2005;5(1):1.CrossRefGoogle Scholar
  39. 39.
    Trzeciak L, Hennig E, Kolodziejski J, Nowacki M, Ostrowski J. Mutations, methylation and expression of CDKN2a/p16 gene in colorectal cancer and normal colonic mucosa. Cancer Lett. 2001;163(1):17–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Xing X, Cai W, Shi H, Wang Y, Li M, Jiao J, Chen M. The prognostic value of CDKN2A hypermethylation in colorectal cancer: a meta-analysis. Br J Cancer. 2013;108(12):2542–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Watanabe M, Sowa Y, Yogosawa M, Sakai T. Novel MEK inhibitor trametinib and other retinoblastoma gene (RB)-reactivating agents enhance efficacy of 5-fluorouracil on human colon cancer cells. Cancer Sci. 2013;104(6):687–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Fumagalli D, Gavin PG, Taniyama Y, Kim SI, Choi HJ, Paik S, Pogue-Geile KL. A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes. BMC Cancer. 2010;10:101.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Li T, Liao X, Lochhead P, Morikawa T, Yamauchi M, Nishihara R, et al. SMO expression in colorectal cancer: associations with clinical, pathological, and molecular features. Ann Surg Oncol. 2014;21(13):4164–73.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medical OncologySir Ganga Ram HospitalNew DelhiIndia
  2. 2.Amity Institute of BiotechnologyAmity UniversityNoidaIndia
  3. 3.Strand Life SciencesBangaloreIndia

Personalised recommendations