Medical Oncology

, 33:98 | Cite as

Profiling gene mutations, translocations, and multidrug resistance in pediatric acute lymphoblastic leukemia: a step forward to personalizing medicine

  • Alphy Rose-James
  • R. Shiji
  • P. Kusumakumary
  • Manjusha Nair
  • Suraj K. George
  • T. T. SreelekhaEmail author
Original Paper


Precise risk stratification and tailored therapy in acute lymphoblastic leukemia (ALL) can lead to enhanced survival rates among children. Translocations and mutations along with multidrug resistance markers are important factors that determine therapeutic efficacy. Gene mutation profiling of patients at the time of diagnosis can offer accurate clinical decision-making. Multiplex PCR was used to screen for various translocations, mutations, and P-glycoprotein (P-gp) status in pediatric ALL samples. The roles of P-gp were analyzed at the transcriptional and translational levels by using real-time PCR and immunoblotting, respectively. ALL specific cell line Jurkat was used to validate the functional role of P-gp in imparting drug resistance by siRNA knockdown studies. Co-occurrence of translocations and mutations contributes to cellular drug resistance. Presence of any translocation in addition to FLT3/ITD hints for overactive P-gp. Co-occurrence of E2A/PBX and TEL/AML has also been positively correlated with P-gp status. Multiplex PCR provides a rapid and cost effective technique for profiling translocations, mutations, and multidrug resistance status that determines what therapy patients could be administered. Mutation profiling in patients for analyzing genetic lesions along with drug resistance profiling will help improve risk stratification and personalized medicine, thereby increasing the treatment success rates among pediatric patients with leukemia.


Mutation analysis Translocation Acute lymphoblastic leukemia P-gp Multiplex PCR 



The authors thank Kerala State Council for Science, Technology and Environment for financial support for the work (No. 013/SRSHS/2013/CSTE DATED 11/04/2014) and Council of Scientific and Industrial Research (CSIR) for the Junior Research Fellowship (No: 09/553(0021)/2010-EMR-1 dated 22/12/2010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, Gaynon P, Silverman L, Janka-Schaub G, Kamps W, Pui CH, Masera G. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.CrossRefPubMedGoogle Scholar
  2. 2.
    Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA, Sallan SE, Korsmeyer SJ. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103(9):3544–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Asakura K, Uchida H, Miyachi H, Kobayashi H, Miyakawa Y, Nimer SD, Takahashi H, Ikeda Y, Kizaki M. TEL/AML1 overcomes drug resistance through transcriptional repression of multidrug resistance-1 gene expression. Mol Cancer Res. 2004;2(6):339–47.PubMedGoogle Scholar
  4. 4.
    Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V, Pieters R, Stary J, Escherich G, Campbell M, Li CK, Vora A, Aricò M, Röttgers S, Saha V, Valsecchi MG. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13(9):936–45.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chessels JM, Swansbury GJ, Reeves B, Bailey CC, Richards SM. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol. 1997;99(1):93–100.CrossRefPubMedGoogle Scholar
  6. 6.
    Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Faderl S, Kantarjian HM, Talpaz M, Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood. 1998;91(11):3995–4019.PubMedGoogle Scholar
  8. 8.
    Fathi AT, Chen YB. Treatment of FLT3–ITD acute myeloid leukemia. Am J Blood Res. 2011;1(2):175–89.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Foa R, Vitale A, Mancini M, Cuneo A, Mecucci C, Elia L, Lombardo R, Saglio G, Torelli G, Annino L, Specchia G, Damasio E, Recchia A, Di Raimondo F, Morra E, Volpe E, Tafuri A, Fazi P, Hunger SP, Mandelli F. E2A–PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol. 2003;120(3):484–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M, Jonsson OG, Kanerva J, Schmiegelow K, Larsson R, Lönnerholm G. Translocation t(12;21) is related to in vitro cellular drug sensitivity to doxorubicin and etoposide in childhood acute lymphoblastic leukemia. Blood. 2004;104(8):2452–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M, Jonmundsson G, Kanerva J, Schmiegelow K, Larsson R, Lönnerholm G, Nordic Society for Paediatric Haematology and Oncology. Translocation t(1;19) is related to low cellular drug resistance in childhood acute lymphoblastic leukaemia. Leukemia. 2005;19(1):165–9.PubMedGoogle Scholar
  12. 12.
    Goasguen JE, Dossot JM, Fardel O, Le Mee F, Le Gall E, Leblay R, LePrise PY, Chaperon J, Fauchet R. Expression of the multidrug resistance-associated P-glycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications. Blood. 1993;81(9):2394–8.PubMedGoogle Scholar
  13. 13.
    Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427.CrossRefPubMedGoogle Scholar
  14. 14.
    Gros P, Ben Neriah YB, Croop JM, Housman DE. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986;323(6090):728–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Harrison CJ, Foroni L. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002;6(2):91–113; discussion 200-112.Google Scholar
  16. 16.
    Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood. 1991;77(4):687–93.PubMedGoogle Scholar
  17. 17.
    Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Jamil A, Theil KS, Kahwash S, Ruymann FB, Klopfenstein KJ. TEL/AML-1 fusion gene. Its frequency and prognostic significance in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2000;122(2):73–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kamps MP, Murre C, Sun XH, Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990;60(4):547–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Kamps MP, Look AT, Baltimore D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A–Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 1991;5(3):358–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Kiyoi H. FLT3 inhibitors: recent advances and problems for clinical application. Nagoya J Med Sci. 2015;77(1–2):7–17.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kourti M, Vavatsi N, Gombakis N, Tzimagiorgis G, Papageorgiou T, Koliouskas D, Athanassiadou F. Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol. 2007;86(2):166–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Kusaba H, Nakayama M, Harada T, Nomoto M, Kohno K, Kuwano M, Wada M. Association of 5′ CpG demethylation and altered chromatin structure in the promoter region with transcriptional activation of the multidrug resistance 1 gene in human cancer cells. Eur J Biochem. 1999;262(3):924–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Lugthart S, Cheok MH, den Boer ML, Yang W, Holleman A, Cheng C, Pui CH, Relling MV, Janka-Schaub GE, Pieters R, Evans WE. Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell. 2005;7(4):375–86.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakao M, Janssen JW, Erz D, Seriu T, Bartram CR. Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia. 2000;14(3):522–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990;60(4):535–45.CrossRefPubMedGoogle Scholar
  27. 27.
    Onda K, Suzuki R, Tanaka S, Oga H, Oka K, Hirano T. Decitabine, a DNA methyltransferase inhibitor, reduces P-glycoprotein mRNA and protein expressions and increases drug sensitivity in drug-resistant MOLT4 and Jurkat cell lines. Anticancer Res. 2012;32(10):4439–44.PubMedGoogle Scholar
  28. 28.
    Preisler HD. Multidrug resistance is more than MDR1 activity. Leuk Res. 1995;19(7):429–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Pui CH, Kane JR, Crist WM. Biology and treatment of infant leukemias. Leukemia. 1995;9(5):762–9.PubMedGoogle Scholar
  30. 30.
    Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl Med. 1998;339(9):605–15.CrossRefGoogle Scholar
  31. 31.
    Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Rubnitz JE, Pui CH, Downing JR. The role of TEL fusion genes in pediatric leukemias. Leukemia. 1999;13(1):6–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Rubnitz JE, Pui CH. Recent advances in the treatment and understanding of childhood acute lymphoblastic leukaemia. Cancer Treat Rev. 2003;29(1):31–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, Wang C, Davies SM, Gaynon PS, Trigg M, Rutledge R, Burden L, Jorstad D, Carroll A, Heerema NA, Winick N, Borowitz MJ, Hunger SP, Carroll WL, Camitta B. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Seton-Rogers S. Therapeutic resistance: ALL-important mutations. Nat Rev Cancer. 2013;13(3):151.CrossRefPubMedGoogle Scholar
  36. 36.
    Slany RK. The molecular biology of mixed lineage leukemia. Haematologica. 2009;94(7):984–93.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Small D. FLT3 mutations: biology and treatment. Hematology/The Education Program of the American Society of Hematology American Society of Hematology Education Program; 2006. p. 178–84.Google Scholar
  38. 38.
    Styczynski J, Wysocki M, Debski R, Czyzewski K, Kolodziej B, Rafinska B, Kubicka M, Koltan S, Koltan A, Pogorzala M, Kurylak A, Olszewska-Slonina D, Balwierz W, Juraszewska E, Wieczorek M, Olejnik I, Krawczuk-Rybak M, Kuzmicz M, Kowalczyk J, Stefaniak J, Badowska W, Sonta-Jakimczyk D, Szczepanski T, Matysiak M, Malinowska I, Stanczak E, Wachowiak J, et al. Predictive value of multidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia. J Cancer Res Clin Oncol. 2007;133(11):875–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Tirado CA, Shabsovich D, Denicola M, Rao D, Yang L, Garcia R, Rao N. A case of pediatric B-lymphoblastic leukemia presenting with a t(9;12)(p24;q11.2) involving JAK2 and concomitant MLL rearrangement with apparent insertion at 6q27. Biomark Res. 2013;1(1):31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp Hematol Oncol. 2014;3:16.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wuchter C, Leonid K, Ruppert V, Schrappe M, Büchner T, Schoch C, Haferlach T, Harbott J, Ratei R, Dörken B, Ludwig WD. Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica. 2000;85(7):711–21.PubMedGoogle Scholar
  42. 42.
    Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, Buetow KH, Carroll WL, Chen IM, Devidas M, Gerhard DS, Loh ML, Reaman GH, Relling MV, Camitta BM, Bowman WP, Smith MA, Willman CL, Downing JR, Hunger SP. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118(11):3080–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alphy Rose-James
    • 1
  • R. Shiji
    • 1
  • P. Kusumakumary
    • 2
  • Manjusha Nair
    • 2
  • Suraj K. George
    • 3
  • T. T. Sreelekha
    • 1
    Email author
  1. 1.Laboratory of Biopharmaceuticals, Division of Cancer ResearchRegional Cancer CentreTrivandrumIndia
  2. 2.Department of Pediatric OncologyRegional Cancer CentreTrivandrumIndia
  3. 3.Department of HematopathologyUT MD Anderson Cancer CenterHoustonUSA

Personalised recommendations