Medical Oncology

, 33:80 | Cite as

Intratumoral expression of programmed death ligand 1 (PD-L1) in patients with clear cell renal cell carcinoma (ccRCC)

  • M. Abbas
  • S. Steffens
  • M. Bellut
  • H. Eggers
  • A. Großhennig
  • J. U. Becker
  • G. Wegener
  • A. J. Schrader
  • V. Grünwald
  • P. IvanyiEmail author
Original Paper


The immunological checkpoints of programmed death 1 and its ligand (PD-L1) are currently in focus as novel therapeutic targets in renal cell carcinoma (RCC). The aim of this study was to evaluate the prognostic association of PD-L1 expression in clear cell (cc) RCC with clinical parameters, tumor aggressiveness and overall survival (OS). Patients who underwent renal surgery due to RCC between 1994 and 2003 were retrospectively evaluated. Tumor specimens were analyzed for PD-L1 expression by immunohistochemistry. One hundred and seventy-seven ccRCC patients were eligible for analysis, in which 140 (79.1 %) were negative and 37 (20.9 %) were positive for PD-L1 expression. PD-L1 positivity was associated with female gender (p = 0.001), lymph node metastasis (p = 0.004), distant metastasis (p = 0.002), higher AJCC stage (p = 0.004), as well as advanced disease (pT3/4 and/or N+ and/or M1) (p < 0.001). Kaplan–Meier analysis revealed a significantly diminished 5- and 10-year overall survival of 46.7 and 28.3 % for PD-L1+ compared to PD-L1 tumors with 66 and 53.4 % (p = 0.005), respectively. Univariate analysis showed a significant negative association of OS with PD-L1 positivity [p = 0.005; HR: 2 (95 % CI 1.2–3.3)], even though PD-L1 positivity only tends to predict independently the OS using multivariate analyses [p = 0.066; HR: 1.6 (95 % CI 0.98–2.7)]. PD-L1 expression in ccRCC is associated with parameters of aggressiveness, as well as with poor OS, even though PD-L1 status was not identified as a significant independent prognostic parameter. However, further studies in larger cohorts are warranted.


Renal cell carcinoma PD-L1 Clear cell histology Survival 



The authors would like to thank Nadine Preiss and Nicole Cramer for their assistance with the compilation of the tissue microarrays and PD-L1 immunohistochemistry. This work was supported by a Ferdinand Eisenberger grant of the Deutsche Gesellschaft für Urologie (German Society of Urology), ID StS1/FE-13 (Sandra Steffens).

Author’s contributions

PI, MA and SS participated in the data interpretation and drafting of the manuscript. PI, AG and HE were involved in the statistical analysis. PI, SS, MA, JUB, MB, HE and GW carried out the data acquisition. VG and AJS revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interests.


  1. 1.
    Ljungberg B. Prognostic factors in renal cell carcinoma. Urol A. 2004;43(Suppl 3):S119–20. doi: 10.1007/s00120-004-0594-6.CrossRefGoogle Scholar
  2. 2.
    Webster WS, Lohse CM, Thompson RH, Dong H, Frigola X, Dicks DL, et al. Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer. 2006;107(1):46–53. doi: 10.1002/cncr.21951.CrossRefPubMedGoogle Scholar
  3. 3.
    Uzzo RG, Rayman P, Kolenko V, Clark PE, Bloom T, Ward AM, et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res. 1999;5(5):1219–29.PubMedGoogle Scholar
  4. 4.
    Rayman P, Wesa AK, Richmond AL, Das T, Biswas K, Raval G, et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res. 2004;10(18 Pt 2):6360S–6S. doi: 10.1158/1078-0432.CCR-050011.CrossRefPubMedGoogle Scholar
  5. 5.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–22. doi: 10.1016/j.immuni.2007.05.016.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 10.1038/nm730.PubMedGoogle Scholar
  8. 8.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. doi: 10.1126/scitranslmed.3003689.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. doi: 10.1158/1078-0432.CCR-13-3271.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14. doi: 10.1007/s00262-004-0593-x.CrossRefPubMedGoogle Scholar
  11. 11.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.CrossRefPubMedGoogle Scholar
  12. 12.
    Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 2006;119(2):317–27. doi: 10.1002/ijc.21775.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012.CrossRefPubMedGoogle Scholar
  14. 14.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. doi: 10.1056/NEJMoa1510665.CrossRefPubMedGoogle Scholar
  15. 15.
    Leite KR, Reis ST, Junior JP, Zerati M, Gomes Dde O, Camara-Lopes LH, et al. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis. Diagn Pathol. 2015;10:189. doi: 10.1186/s13000-015-0414-x.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Krambeck AE, Dong H, Thompson RH, Kuntz SM, Lohse CM, Leibovich BC, et al. Survivin and B7-H1 are collaborative predictors of survival and represent potential therapeutic targets for patients with renal cell carcinoma. Clin Cancer Res. 2007;13(6):1749–56. doi: 10.1158/1078-0432.CCR-06-2129.CrossRefPubMedGoogle Scholar
  17. 17.
    Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M, Kluger Y, et al. PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J Cancer. 2014;5(3):166–72. doi: 10.7150/jca.8167.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5. doi: 10.1158/0008-5472.CAN-05-4303.CrossRefPubMedGoogle Scholar
  19. 19.
    Iacovelli R, Nole F, Verri E, Renne G, Paglino C, Santoni M, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 2015. doi: 10.1007/s11523-015-0392-7.Google Scholar
  20. 20.
    Xu F, Xu L, Wang Q, An G, Feng G, Liu F. Clinicopathological and prognostic value of programmed death ligand-1 (PD-L1) in renal cell carcinoma: a meta-analysis. Int J Clin Exp Med. 2015;8(9):14595–603.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Mengel M, Kreipe H, von Wasielewski R. Rapid and large-scale transition of new tumor biomarkers to clinical biopsy material by innovative tissue microarray systems. Appl Immunohistochem Mol Morphol. 2003;11(3):261–8.CrossRefPubMedGoogle Scholar
  22. 22.
    McDermott DF, Drake CG, Sznol M, Choueiri TK, Powderly JD, Smith DC, et al. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol. 2015. doi: 10.1200/JCO.2014.58.1041.Google Scholar
  23. 23.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17. doi: 10.1016/S0140-6736(14)60958-2.CrossRefPubMedGoogle Scholar
  24. 24.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi: 10.1056/NEJMoa1200690.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75. doi: 10.1200/JCO.2009.26.7609.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. doi: 10.1056/NEJMoa1305133.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. doi: 10.1200/JCO.2013.53.0105.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maine CJ, Aziz NH, Chatterjee J, Hayford C, Brewig N, Whilding L, et al. Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. Cancer Immunol Immunother. 2014;63(3):215–24. doi: 10.1007/s00262-013-1503-x.CrossRefPubMedGoogle Scholar
  29. 29.
    Choueiri TK, Fay AP, Gray KP, Callea M, Ho TH, Albiges L, et al. PD-L1 expression in non-clear cell renal cell carcinoma. Ann Oncol. 2014. doi: 10.1093/annonc/mdu445.Google Scholar
  30. 30.
    Abbas M, Steffens S, Bellut M, Becker JU, Grosshennig A, Eggers H, et al. Do programmed death 1 (PD-1) and its ligand (PD-L1) play a role in patients with non-clear cell renal cell carcinoma? Med Oncol. 2016;33(6):59. doi: 10.1007/s12032-016-0770-8.CrossRefPubMedGoogle Scholar
  31. 31.
    Kang MJ, Kim KM, Bae JS, Park HS, Lee H, Chung MJ, et al. Tumor-infiltrating PD1-positive lymphocytes and FoxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl Oncol. 2013;6(3):282–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S, Kim KM, et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One. 2013;8(12):e82870. doi: 10.1371/journal.pone.0082870.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Muenst S, Schaerli AR, Gao F, Daster S, Trella E, Droeser RA, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2014;146(1):15–24. doi: 10.1007/s10549-014-2988-5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20(10):2773–82. doi: 10.1158/1078-0432.CCR-13-2702.CrossRefPubMedGoogle Scholar
  35. 35.
    Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res. 2007;13(6):1757–61. doi: 10.1158/1078-0432.CCR-06-2599.CrossRefPubMedGoogle Scholar
  36. 36.
    McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase la study. J Clin Oncol. 2016;34(8):833–42. doi: 10.1200/JCO.2015.63.7421.CrossRefPubMedGoogle Scholar
  37. 37.
    Shin SJ, Jeon YK, Kim PJ, Cho YM, Koh J, Chung DH, et al. Clinicopathologic analysis of PD-L1 and PD-L2 expression in renal cell carcinoma: association with oncogenic proteins status. Ann Surg Oncol. 2016;23(2):694–702. doi: 10.1245/s10434-015-4903-7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for PathologyHannover Medical SchoolHannoverGermany
  2. 2.Department of Urology and Urological OncologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
  4. 4.Institute for BiometricsHannover Medical SchoolHannoverGermany
  5. 5.Institute of PathologyUniversity Hospital of CologneCologneGermany
  6. 6.Tumor CenterHannover Medical SchoolHannoverGermany
  7. 7.Department of UrologyUniversity Hospital of MuensterMuensterGermany

Personalised recommendations