Medical Oncology

, 33:75 | Cite as

Expression level and methylation status of three tumor suppressor genes, DLEC1, ITGA9 and MLH1, in non-small cell lung cancer

  • Dorota Pastuszak-LewandoskaEmail author
  • Jacek Kordiak
  • Adam Antczak
  • Monika Migdalska-Sęk
  • Karolina H. Czarnecka
  • Paweł Górski
  • Ewa Nawrot
  • Justyna M. Kiszałkiewicz
  • Daria Domańska-Senderowska
  • Ewa Brzeziańska-Lasota
Original Paper


Despite therapeutic advances, lung cancer remains one of the most common causes of cancer-related death in the world. There is a need to develop biomarkers of diagnostic and/or prognostic value and to translate findings in basic science research to clinical application. Tumor suppressor genes (TSGs) represent potential useful markers for disease detection, progression and treatment target. We tried to elucidate the role of three 3p21.3 TSGs: DLEC1, ITGA9 and MLH1, in non-small cell lung cancer (NSCLC). We assessed their expression pattern by qPCR in 59 NSCLC tissues and in the matched macroscopically unchanged lung tissues. Additionally, we analyzed gene promoter methylation status by methylation-specific PCR in NSCLC samples. We did not find significant correlations between gene expression and methylation. In case of DLEC1 and ITGA9, expression levels were decreased in 71–78 % of tumor samples and significantly different between tumor and normal tissues (P = 0.0001). It could point to their diagnostic value. ITGA9 could also be regarded as a diagnostic marker differentiating NSCLC subtypes, as its expression level was significantly lower in squamous cell carcinoma (P = 0.001). The simultaneous down-regulation of DLEC1 and ITGA9 was observed in 52.5 % of NSCLCs. MSPs revealed high frequencies of gene promoter methylation in NSCLCs: 84 % for DLEC1 and MLH1 and 57 % for ITGA9. Methylation indexes reflected moderate gene methylation levels: 34 % for ITGA9, 27 % for MLH1 and 26 % for DLEC1. However, frequent simultaneous methylation of the studied genes in more than 50 % of NSCLCs suggests the possibility of consider them as a panel of epigenetic markers.


Non-small cell lung cancer Gene expression Promoter methylation Tumor suppressor gene Biomarker 



This work was supported by the Grant of the National Science Centre, Poland, No. 2011/01/B/NZ4/04966.

Authors’ contribution

Dorota Pastuszak-Lewandoska and Jacek Kordiak have equally contributed to this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL, Massion PP. The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila). 2012;5:992–1006.CrossRefGoogle Scholar
  3. 3.
    Hesson LB, Cooper WN, Latif F. Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene. 2007;26:7283–301.CrossRefPubMedGoogle Scholar
  4. 4.
    Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The international lung cancer chromosome 3p21.3 tumor suppressor gene consortium. Cancer Res. 2000;60:6116–33.PubMedGoogle Scholar
  5. 5.
    Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60:1949–60.PubMedGoogle Scholar
  6. 6.
    Senchenko VN, Liu J, Loginov W, Bazov I, Angeloni D, Seryogin Y, et al. Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene. 2004;23:5719–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, et al. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics. 2012;7:502–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Zabarovsky ER, Lerman MI, Minna JD. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 2002;21:6915–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Pastuszak-Lewandoska D, Kordiak J, Migdalska-Sęk M, Czarnecka KH, Antczak A, Górski P, et al. Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1, NPRL2/G21 and RASSF1A in non-small cell lung cancer patients. Respir Res. 2015;16:76.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93:691–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Toyooka S, Suzuki M, Maruyama R, Toyooka KO, Tsukuda K, Fukuyama Y, et al. The relationship between aberrant methylation and survival in non-small-cell lung cancers. Br J Cancer. 2004;91:771–4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zöchbauer-Müller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 2001;61:249–55.PubMedGoogle Scholar
  14. 14.
    Heller G, Zielinski CC, Zöchbauer-Müller S. Lung cancer: from single-gene methylation to methylome profiling. Cancer Metastasis Rev. 2010;29:95–107.CrossRefPubMedGoogle Scholar
  15. 15.
    Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA. 2003;100:12253–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett. 2014;342:200–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Miao Y, Yi J, Wang R, Chen L. Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer. Clin Lung Cancer. 2010;11:264–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain- containing genes in lung cancer cells. Cancer Res. 2006;66:7939–47.CrossRefPubMedGoogle Scholar
  20. 20.
    Seng TJ, Currey N, Cooper WA, Lee CS, Chan C, Horvath L, et al. DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br J Cancer. 2008;99:375–82.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sasaki H, Hikosaka Y, Kawano O, Moriyama S, Yano M, Fujii Y. Methylation of the DLEC1 gene correlates with poor prognosis in Japanese lung cancer patients. Oncol Lett. 2010;1:283–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Anedchenko EA, Dmitriev AA, Krasnov GS, Kondrat’eva TT, Kopantsev EP, Vinogradova TV, et al. Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer. Mol Biol (Mosk). 2008;42:965–76.CrossRefGoogle Scholar
  23. 23.
    Høye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A. The newcomer in the integrin family: integrin α9 in biology and cancer. Adv Biol Regul. 2012;52:326–39.CrossRefPubMedGoogle Scholar
  24. 24.
    Hibi K, Yamakawa K, Ueda R, Horio Y, Murata Y, Tamari M, et al. Aberrant upregulation of a novel integrin alpha subunit gene at 3p21.3 in small cell lung cancer. Oncogene. 1994;9:611–9.PubMedGoogle Scholar
  25. 25.
    Mostovich LA, Prudnikova TY, Kondratov AG, Loginova D, Vavilov PV, Rykova VI, et al. Integrin alpha9 (ITGA9) expression and epigenetic silencing in human breast tumors. Cell Adhes Migr. 2011;5:395–401.CrossRefGoogle Scholar
  26. 26.
    Geng X, Wang F, Zhang L, Zhang WM. Loss of heterozygosity combined with promoter hypermethylation, the main mechanism of human MutL Homolog (hMLH1) gene inactivation in non-small cell lung cancer in a Chinese population. Tumori. 2009;95:488–94.PubMedGoogle Scholar
  27. 27.
    Bischoff J, Ignatov A, Semczuk A, Schwarzenau C, Ignatov T, Krebs T, et al. hMLH1 promoter hypermethylation and MSI status in human endometrial carcinomas with and without metastases. Clin Exp Metastasis. 2012;29:889–900.CrossRefPubMedGoogle Scholar
  28. 28.
    Safar AM, Spencer H 3rd, Su X, Coffey M, Cooney CA, Ratnasinghe LD, et al. Methylation profiling of archived non-small cell lung cancer: a promising prognostic system. Clin Cancer Res. 2005;11:4400–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Tang M, Torres-Lanzas J, Lopez-Rios F, Esteller M, Sanchez-Cespedes M. Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer. 2006;119:2603–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest. 2003;111:887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hsu HS, Wen CK, Tang YA, Lin RK, Li WY, Hsu WH, et al. Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res. 2005;11:5410–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Gomes A, Reis-Silva M, Alarcão A, Couceiro P, Sousa V, Carvalho L. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung. Rev Port Pneumol. 2014;20:20–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Li M, Zhang Q, Liu L, Lu W, Wei H, Li RW, et al. Expression of the mismatch repair gene hMLH1 is enhanced in non-small cell lung cancer with EGFR mutations. PLoS One. 2013;8:e78500.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dorota Pastuszak-Lewandoska
    • 1
    Email author
  • Jacek Kordiak
    • 2
  • Adam Antczak
    • 3
  • Monika Migdalska-Sęk
    • 1
  • Karolina H. Czarnecka
    • 1
  • Paweł Górski
    • 4
  • Ewa Nawrot
    • 1
  • Justyna M. Kiszałkiewicz
    • 1
  • Daria Domańska-Senderowska
    • 1
  • Ewa Brzeziańska-Lasota
    • 1
  1. 1.Department of Molecular Bases of MedicineMedical University of LodzLodzPoland
  2. 2.Department of Chest Surgery, General and Oncological Surgery, University Hospital No. 2Medical University of LodzLodzPoland
  3. 3.Department of General and Oncological PulmonologyMedical University of LodzLodzPoland
  4. 4.Department of Pneumology and AllergologyMedical University of LodzLodzPoland

Personalised recommendations