Medical Oncology

, 33:71 | Cite as

Comparison of KRAS mutation status between primary tumor and metastasis in Chinese colorectal cancer patients

  • Zhe-Zhen Li
  • Long Bai
  • Feng Wang
  • Zi-Chen Zhang
  • Fang Wang
  • Zhao-Lei Zeng
  • Jun-Bo Zeng
  • Dong-Sheng Zhang
  • Feng-Hua Wang
  • Zhi-Qiang Wang
  • Yu-Hong Li
  • Jian-Yong Shao
  • Rui-Hua XuEmail author
Original Paper


Detection of KRAS mutation status is a routine clinical procedure for predicting response to anti-EGFR therapy in colorectal cancer (CRC) patients. Previous studies showed high concordance of KRAS mutation status in primary lesion and corresponding metastatic sites in CRC. However, the data were mostly from Caucasians. The aim of this study is to compare KRAS mutation and other molecules mutation status between primary tumor and corresponding metastatic lesion in Chinese patients with CRC. In this retrospective study, Chinese CRC patients with paired samples of primary tumor and metastatic site were detected for KRAS codon 12 and 13 with quantitative real-time PCR, or detected for OncoCarta™ panel of 19 genes with MassARRAY® technique, including KRAS, BRAF, NRAS and PIK3CA et al. Forty-eight paired CRC samples were analyzed for KRAS codon 12 and 13 using quantitative real-time PCR. Ten paired samples were analyzed by 19 genes OncoCarta™ Panel with MassARRAY® technique. KRAS mutation was found in 15 (25.9 %) primary tumors and 18 (31.0 %) metastases. The discordance of KRAS was observed in 11 (19.0 %) patients. Alteration of mutation points in primary site with mutant KRAS was not observed. In the 10 patients with multiple gene detection, PIK3CA mutation showed concordant mutation status in primary tumor and metastatic site, whereas discordance in BRAF, NRAS and AKT1 was detected. A concordance rate of 81.0 % was detected in KRAS mutation between primary tumor and metastatic lesion in Chinese patients with CRC. Discordance of BRAF, NRAS and AKT1 mutation status in primary tumor and metastases was observed.


Colorectal cancer KRAS mutation Primary tumor Metastases Concordance 



This work was supported by The National Natural Science Foundation of China (No. 81372570), the Science and Technology Department of Guangdong Province, China (No. 2012B031800088) and the Science and Technology Department of Guangdong Province, China (No. C2011019). The authors gratefully thank staff members in the Department of Medical Oncology and Department of Molecular Diagnostics at Sun Yat-sen University Cancer Center for their suggestions and assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Informed consent was obtained from all individual participants included in the study, giving their authorization to access their clinical information and tumor samples for research purpose.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32. doi: 10.3322/caac.21338.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu S, Zheng R, Zhang M, Zhang S, Sun X, Chen W. Incidence and mortality of colorectal cancer in China, 2011. Chin J Cancer Res. 2015;27(1):22–8. doi: 10.3978/j.issn.1000-9604.2015.02.01.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Edge SB, BDCC, American Joint Committee on Cancer (AJCC). Cancer staging manual. 7th ed. New York: Springer; 2010.Google Scholar
  5. 5.
    Cook AD, Single R, McCahill LE. Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Surg Oncol. 2005;12(8):637–45. doi: 10.1245/ASO.2005.06.012.CrossRefPubMedGoogle Scholar
  6. 6.
    Wasan H, Meade AM, Adams R, Wilson R, Pugh C, Fisher D, et al. Intermittent chemotherapy plus either intermittent or continuous cetuximab for first-line treatment of patients with KRAS wild-type advanced colorectal cancer (COIN-B): a randomised phase 2 trial. Lancet Oncol. 2014;15(6):631–9. doi: 10.1016/S1470-2045(14)70106-8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25(7):1346–55. doi: 10.1093/annonc/mdu141.CrossRefPubMedGoogle Scholar
  8. 8.
    Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17. doi: 10.1056/NEJMoa0805019.CrossRefPubMedGoogle Scholar
  9. 9.
    Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658–64. doi: 10.1200/JCO.2006.08.1620.CrossRefPubMedGoogle Scholar
  10. 10.
    Waring P, Tie J, Maru D, Karapetis CS. RAS mutations as predictive biomarkers in clinical management of metastatic colorectal cancer. Clin Colorectal Cancer. 2015;. doi: 10.1016/j.clcc.2015.10.006.PubMedGoogle Scholar
  11. 11.
    Schirripa M, Cremolini C, Loupakis F, Morvillo M, Bergamo F, Zoratto F, et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2015;136(1):83–90. doi: 10.1002/ijc.28955.CrossRefPubMedGoogle Scholar
  12. 12.
    Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Clin Oncol. 2016;34(2):179–85. doi: 10.1200/JCO.2015.63.9674.CrossRefPubMedGoogle Scholar
  13. 13.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Colon cancer [version 2. 2016]. 2015; 2015(30 Nov).Google Scholar
  14. 14.
    Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, Group EGW. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):i1–9. doi: 10.1093/annonc/mdu260.CrossRefGoogle Scholar
  15. 15.
    Harle A, Salleron J, Perkins G, Pilati C, Blons H, Laurent-Puig P, et al. Expression of pEGFR and pAKT as response-predictive biomarkers for RAS wild-type patients to anti-EGFR monoclonal antibodies in metastatic colorectal cancers. Br J Cancer. 2015;113(4):680–5. doi: 10.1038/bjc.2015.250.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12. doi: 10.1200/JCO.2008.18.0786.CrossRefPubMedGoogle Scholar
  17. 17.
    Tian S, Simon I, Moreno V, Roepman P, Tabernero J, Snel M, et al. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut. 2013;62(4):540–9. doi: 10.1136/gutjnl-2012-302423.CrossRefPubMedGoogle Scholar
  18. 18.
    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62. doi: 10.1016/S1470-2045(10)70130-3.CrossRefPubMedGoogle Scholar
  19. 19.
    Zito Marino F, Liguori G, Aquino G, La Mantia E, Bosari S, Ferrero S, et al. Intratumor heterogeneity of ALK-rearrangements and homogeneity of EGFR-mutations in mixed lung adenocarcinoma. PLoS One. 2015;10(9):e139264. doi: 10.1371/journal.pone.0139264.Google Scholar
  20. 20.
    Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21(8):1951–61. doi: 10.1158/1078-0432.CCR-14-0122.CrossRefPubMedGoogle Scholar
  21. 21.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92. doi: 10.1016/j.cell.2011.09.024.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306. doi: 10.1038/nature17038.CrossRefPubMedGoogle Scholar
  23. 23.
    Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64. doi: 10.1038/nature12627.CrossRefPubMedGoogle Scholar
  24. 24.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7. doi: 10.1038/nature09515.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun L, Zhang Q, Luan H, Zhan Z, Wang C, Sun B. Comparison of KRAS and EGFR gene status between primary non-small cell lung cancer and local lymph node metastases: implications for clinical practice. J Exp Clin Cancer Res. 2011;30:30. doi: 10.1186/1756-9966-30-30.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Curtit E, Nerich V, Mansi L, Chaigneau L, Cals L, Villanueva C, et al. Discordances in estrogen receptor status, progesterone receptor status, and HER2 status between primary breast cancer and metastasis. Oncologist. 2013;18(6):667–74. doi: 10.1634/theoncologist.2012-0350.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Saroufim M, Habib RH, Gerges R, Saab J, Loya A, Amr SS, et al. Comparing BRAF mutation status in matched primary and metastatic cutaneous melanomas: implications on optimized targeted therapy. Exp Mol Pathol. 2014;97(3):315–20. doi: 10.1016/j.yexmp.2014.09.008.CrossRefPubMedGoogle Scholar
  28. 28.
    Weber JC, Meyer N, Pencreach E, Schneider A, Guerin E, Neuville A, et al. Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes. Int J Cancer. 2007;120(3):524–32. doi: 10.1002/ijc.22343.CrossRefPubMedGoogle Scholar
  29. 29.
    Etienne-Grimaldi MC, Formento JL, Francoual M, Francois E, Formento P, Renee N, et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res. 2008;14(15):4830–5. doi: 10.1158/1078-0432.CCR-07-4906.CrossRefPubMedGoogle Scholar
  30. 30.
    Park JH, Han SW, Oh DY, Im SA, Jeong SY, Park KJ, et al. Analysis of KRAS, BRAF, PTEN, IGF1R, EGFR intron 1 CA status in both primary tumors and paired metastases in determining benefit from cetuximab therapy in colon cancer. Cancer Chemother Pharmacol. 2011;68(4):1045–55. doi: 10.1007/s00280-011-1586-z.CrossRefPubMedGoogle Scholar
  31. 31.
    Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010;16(3):790–9. doi: 10.1158/1078-0432.CCR-09-2446.CrossRefPubMedGoogle Scholar
  32. 32.
    Sequenom MassARRAY System Brochure.Google Scholar
  33. 33.
    OncoCarta Panel v1.0 Flyer.Google Scholar
  34. 34.
    Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum. 2011;54(9):1170–8. doi: 10.1097/DCR.0b013e31821d37a3.CrossRefPubMedGoogle Scholar
  35. 35.
    Knijn N, Mekenkamp LJ, Klomp M, Vink-Borger ME, Tol J, Teerenstra S, et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer. 2011;104(6):1020–6. doi: 10.1038/bjc.2011.26.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cejas P, Lopez-Gomez M, Aguayo C, Madero R, de Castro Carpeno J, Belda-Iniesta C, et al. KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS ONE. 2009;4(12):e8199. doi: 10.1371/journal.pone.0008199.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Santini D, Loupakis F, Vincenzi B, Floriani I, Stasi I, Canestrari E, et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist. 2008;13(12):1270–5. doi: 10.1634/theoncologist.2008-0181.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim MJ, Lee HS, Kim JH, Kim YJ, Kwon JH, Lee JO, et al. Different metastatic pattern according to the KRAS mutational status and site-specific discordance of KRAS status in patients with colorectal cancer. BMC Cancer. 2012;12:347. doi: 10.1186/1471-2407-12-347.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mao C, Wu XY, Yang ZY, Threapleton DE, Yuan JQ, Yu YY, et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep. 2015;5:8065. doi: 10.1038/srep08065.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Albanese I, Scibetta AG, Migliavacca M, Russo A, Bazan V, Tomasino RM, et al. Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem Biophys Res Commun. 2004;325(3):784–91. doi: 10.1016/j.bbrc.2004.10.111.CrossRefPubMedGoogle Scholar
  41. 41.
    The LO. Liquid cancer biopsy: the future of cancer detection? Lancet Oncol. 2016;17(2):123. doi: 10.1016/S1470-2045(16)00016-4.CrossRefGoogle Scholar
  42. 42.
    Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37. doi: 10.1038/nrc3066.CrossRefPubMedGoogle Scholar
  43. 43.
    Thierry AR, Mouliere F, El MS, Mollevi C, Lopez-Crapez E, Rolet F, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20(4):430–5. doi: 10.1038/nm.3511.CrossRefPubMedGoogle Scholar
  44. 44.
    Pietrantonio F, Petrelli F, Coinu A, Di Bartolomeo M, Borgonovo K, Maggi C, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer. 2015;51(5):587–94. doi: 10.1016/j.ejca.2015.01.054.CrossRefPubMedGoogle Scholar
  45. 45.
    Wong R, Cunningham D. Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with epidermal growth factor receptor antibodies. J Clin Oncol. 2008;26(35):5668–70. doi: 10.1200/JCO.2008.19.5024.CrossRefPubMedGoogle Scholar
  46. 46.
    Baisse B, Bouzourene H, Saraga EP, Bosman FT, Benhattar J. Intratumor genetic heterogeneity in advanced human colorectal adenocarcinoma. Int J Cancer. 2001;93(3):346–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Hershkovitz D, Simon E, Bick T, Prinz E, Noy S, Sabo E, et al. Adenoma and carcinoma components in colonic tumors show discordance for KRAS mutation. Hum Pathol. 2014;45(9):1866–71. doi: 10.1016/j.humpath.2014.05.005.CrossRefPubMedGoogle Scholar
  48. 48.
    Bouchahda M, Karaboue A, Saffroy R, Innominato P, Gorden L, Guettier C, et al. Acquired KRAS mutations during progression of colorectal cancer metastases: possible implications for therapy and prognosis. Cancer Chemother Pharmacol. 2010;66(3):605–9. doi: 10.1007/s00280-010-1298-9.CrossRefPubMedGoogle Scholar
  49. 49.
    Gattenlohner S, Etschmann B, Kunzmann V, Thalheimer A, Hack M, Kleber G, et al. Concordance of KRAS/BRAF Mutation Status in Metastatic Colorectal Cancer before and after Anti-EGFR Therapy. J Oncol. 2009;2009:831626. doi: 10.1155/2009/831626.CrossRefPubMedGoogle Scholar
  50. 50.
    Kawamoto Y, Tsuchihara K, Yoshino T, Ogasawara N, Kojima M, Takahashi M, et al. KRAS mutations in primary tumours and post-FOLFOX metastatic lesions in cases of colorectal cancer. Br J Cancer. 2012;107(2):340–4. doi: 10.1038/bjc.2012.218.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhe-Zhen Li
    • 1
  • Long Bai
    • 1
  • Feng Wang
    • 1
  • Zi-Chen Zhang
    • 2
  • Fang Wang
    • 2
  • Zhao-Lei Zeng
    • 1
  • Jun-Bo Zeng
    • 3
  • Dong-Sheng Zhang
    • 1
  • Feng-Hua Wang
    • 1
  • Zhi-Qiang Wang
    • 1
  • Yu-Hong Li
    • 1
  • Jian-Yong Shao
    • 2
  • Rui-Hua Xu
    • 1
    Email author
  1. 1.Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouPeople’s Republic of China
  2. 2.Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouPeople’s Republic of China
  3. 3.Faculty of Medical SciencesSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations