Advertisement

Medical Oncology

, 33:64 | Cite as

Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology

  • Kaifu Li
  • Hua KangEmail author
  • Yajun Wang
  • Tao Hai
  • Guohua Rong
  • Haichen Sun
Original Paper

Abstract

Accumulating evidence suggests that carcinoma-associated fibroblasts (CAFs) influence the efficacy of endocrine therapy. Aromatase inhibitors inhibit the growth of breast tumors by inhibiting the synthesis of estrogen. However, it remains unknown whether the aromatase inhibitor letrozole has an additional impact on CAFs, which further influence the efficacy of endocrine therapy. Primary CAFs were isolated from primary estrogen receptor-positive human breast tumors. Estrogen-deprived culture medium was used to exclude the influence of steroids. In co-culture, primary cultured CAFs increased MCF7 cell adhesion, invasion, migration and proliferation, and letrozole treatment inhibited these increases, except for the increase in proliferation. In total, 258 up-regulated genes and 47 down-regulated genes with an absolute fold change >2 were identified in CAFs co-cultured with MCF7 cell after letrozole treatment. One up-regulated genes (POSTN) and seven down-regulated genes (CCL2, CCL5, CXCL1, IL-8, CXCL5, LEP and NGF) were further validated by real-time PCR. The changes in CCL2 and CXCL1 expression were further confirmed using an automated microscopic imaging-based, high content analysis platform. Although the results need further functional validation, this study is the first to describe the differential tumor-promoting phenotype of CAFs induced by letrozole and the associated gene expression alterations. Most importantly, our data revealed that down-regulation of several secreted factors (CCL2, CCL5, CXCL1 etc.) in CAFs might be partially responsible for the efficacy of letrozole.

Keywords

Breast cancer Carcinoma-associated fibroblasts Endocrine therapy Aromatase inhibitors 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81172517), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20111107110001), the China Medical Fund (No. 313.2233) and the Beijing Municipal Health System Academic Leaders of High-Level Health Personnel Program (No. 2011-2-28).

Author contributions

H Kang designed experiments, provided critical reagents and experimental expertise and supervised the study; KF Li designed experiments, performed the experiments, made the figures and wrote the manuscript; YJ Wang and T Hai collected the tumor tissues; and HC Sun and GH Rong performed some of the experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no competing financial interests.

Supplementary material

12032_2016_779_MOESM1_ESM.pdf (128 kb)
Supplementary material 1 (PDF 127 kb)
12032_2016_779_MOESM2_ESM.pdf (206 kb)
Supplementary material 2 (PDF 206 kb)
12032_2016_779_MOESM3_ESM.pdf (81 kb)
Supplementary material 3 (PDF 81 kb)
12032_2016_779_MOESM4_ESM.pdf (72 kb)
Supplementary material 4 (PDF 71 kb)
12032_2016_779_MOESM5_ESM.pdf (140 kb)
Supplementary material 5 (PDF 140 kb)
12032_2016_779_MOESM6_ESM.pdf (159 kb)
Supplementary material 6 (PDF 159 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32:2255–69. doi: 10.1200/JCO.2013.54.2258.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12. doi: 10.1038/nrc721.CrossRefPubMedGoogle Scholar
  4. 4.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27. doi: 10.1038/nm1764.CrossRefPubMedGoogle Scholar
  5. 5.
    Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015;361:155–63. doi: 10.1016/j.canlet.2015.02.018.CrossRefPubMedGoogle Scholar
  6. 6.
    Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat. 2012;133:459–71. doi: 10.1007/s10549-011-1766-x.CrossRefPubMedGoogle Scholar
  7. 7.
    Holton SE, Bergamaschi A, Katzenellenbogen BS, Bhargava R. Integration of molecular profiling and chemical imaging to elucidate fibroblast-microenvironment impact on cancer cell phenotype and endocrine resistance in breast cancer. PLoS ONE. 2014;9:e96878. doi: 10.1371/journal.pone.0096878.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014;25:47–60. doi: 10.1016/j.semcancer.2014.01.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Radenkovic S, Milosevic Z, Konjevic G, Karadzic K, Rovcanin B, Buta M, et al. Lactate dehydrogenase, catalase, and superoxide dismutase in tumor tissue of breast cancer patients in respect to mammographic findings. Cell Biochem Biophys. 2013;66:287–95. doi: 10.1007/s12013-012-9482-7.CrossRefPubMedGoogle Scholar
  10. 10.
    Jurisic V, Radenkovic S, Konjevic G. The actual role of LDH as tumor marker, biochemical and clinical aspects. Adv Cancer Biomark. 2015;867:115–24. doi: 10.1007/978-94-017-7215-0_8.CrossRefGoogle Scholar
  11. 11.
    Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011;12:924–38. doi: 10.4161/cbt.12.10.17780.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rong G, Kang H, Wang Y, Hai T, Sun H. Candidate markers that associate with chemotherapy resistance in breast cancer through the study on Taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs). PLoS ONE. 2013;8:e70960. doi: 10.1371/journal.pone.0070960.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lonning PE, Eikesdal HP. Aromatase inhibition 2013: clinical state of the art and questions that remain to be solved. Endocr Relat Cancer. 2013;20:R183–201. doi: 10.1530/ERC-13-0099.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamaguchi Y, Takei H, Suemasu K, Kobayashi Y, Kurosumi M, Harada N, et al. Tumor–stromal interaction through the estrogen-signaling pathway in human breast cancer. Cancer Res. 2005;65:4653–62. doi: 10.1158/0008-5472.can-04-3236.CrossRefPubMedGoogle Scholar
  15. 15.
    Pfister CU, Martoni A, Zamagni C, Lelli G, De Braud F, Souppart C, et al. Effect of age and single versus multiple dose pharmacokinetics of letrozole (Femara) in breast cancer patients. Biopharm Drug Dispos. 2001;22:191–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Peng Q, Zhao L, Hou Y, Sun Y, Wang L, Luo H, et al. Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer. PLoS ONE. 2013;8:e60321. doi: 10.1371/journal.pone.0060321.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32:303–15. doi: 10.1007/s10555-012-9415-3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001;411:375–9. doi: 10.1038/35077241.CrossRefPubMedGoogle Scholar
  19. 19.
    Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2015;237:273–81. doi: 10.1002/path.4586.CrossRefPubMedGoogle Scholar
  20. 20.
    Radenkovic S, Konjevic G, Jurisic V, Karadzic K, Nikitovic M, Gopcevic K. Values of MMP-2 and MMP-9 in tumor tissue of basal-like breast cancer patients. Cell Biochem Biophys. 2014;68:143–52. doi: 10.1007/s12013-013-9701-x.CrossRefPubMedGoogle Scholar
  21. 21.
    Shekhar MP, Santner S, Carolin KA, Tait L. Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. Am J Pathol. 2007;170:1546–60. doi: 10.2353/ajpath.2007.061004.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sun X, Mao Y, Wang J, Zu L, Hao M, Cheng G, et al. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene. 2014. doi: 10.1038/onc.2014.158.Google Scholar
  23. 23.
    Busch S, Ryden L, Stal O, Jirstrom K, Landberg G. Low ERK phosphorylation in cancer-associated fibroblasts is associated with tamoxifen resistance in pre-menopausal breast cancer. PLoS ONE. 2012;7:e45669. doi: 10.1371/journal.pone.0045669.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hudelist G, Wulfing P, Kersting C, Burger H, Mattsson B, Czerwenka K, et al. Expression of aromatase and estrogen sulfotransferase in preinvasive and invasive breast cancer. J Cancer Res Clin Oncol. 2008;134:67–73. doi: 10.1007/s00432-007-0249-2.CrossRefPubMedGoogle Scholar
  25. 25.
    Miki Y, Suzuki T, Sasano H. Controversies of aromatase localization in human breast cancer—stromal versus parenchymal cells. J Steroid Biochem Mol Biol. 2007;106:97–101. doi: 10.1016/j.jsbmb.2007.05.007.CrossRefPubMedGoogle Scholar
  26. 26.
    Svensson S, Abrahamsson A, Vazquez Rodriguez G, Olsson AK, Jensen L, Cao Y, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 2015. doi: 10.1158/1078-0432.ccr-15-0204.PubMedGoogle Scholar
  27. 27.
    Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72:2768–79. doi: 10.1158/0008-5472.can-11-3567.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009;125:1276–84. doi: 10.1002/ijc.24378.CrossRefPubMedGoogle Scholar
  29. 29.
    Li M, Knight DA, Synder LA, Smyth MJ, Stewart TJ. A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology. 2013;2:e25474. doi: 10.4161/onci.25474.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zou A, Lambert D, Yeh H, Yasukawa K, Behbod F, Fan F, et al. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-beta signaling proteins. BMC Cancer. 2014;14:781. doi: 10.1186/1471-2407-14-781.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bieche I, Chavey C, Andrieu C, Busson M, Vacher S, Le Corre L, et al. CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer. 2007;14:1039–52. doi: 10.1677/erc.1.01301.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Y, Yao F, Yao X, Yi C, Tan C, Wei L, et al. Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24− phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep. 2009;21:1113–21.PubMedGoogle Scholar
  33. 33.
    Hsu YL, Hou MF, Kuo PL, Huang YF, Tsai EM. Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway. Oncogene. 2013;32:4436–47. doi: 10.1038/onc.2012.444.CrossRefPubMedGoogle Scholar
  34. 34.
    Catalano S, Leggio A, Barone I, De Marco R, Gelsomino L, Campana A, et al. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo. J Cell Mol Med. 2015;19:1122–32. doi: 10.1111/jcmm.12517.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh JK, Simoes BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013;15:210. doi: 10.1186/bcr3436.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tomellini E, Touil Y, Lagadec C, Julien S, Ostyn P, Ziental-Gelus N, et al. Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells. 2015;33:342–53. doi: 10.1002/stem.1849.CrossRefPubMedGoogle Scholar
  37. 37.
    Sasaki H, Yu CY, Dai M, Tam C, Loda M, Auclair D, et al. Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. Breast Cancer Res Treat. 2003;77:245–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Kyutoku M, Taniyama Y, Katsuragi N, Shimizu H, Kunugiza Y, Iekushi K, et al. Role of periostin in cancer progression and metastasis: inhibition of breast cancer progression and metastasis by anti-periostin antibody in a murine model. Int J Mol Med. 2011;28:181–6. doi: 10.3892/ijmm.2011.712.PubMedGoogle Scholar
  39. 39.
    Busch S, Acar A, Magnusson Y, Gregersson P, Ryden L, Landberg G. TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene. 2015;34:27–38. doi: 10.1038/onc.2013.527.CrossRefPubMedGoogle Scholar
  40. 40.
    Busch S, Sims AH, Stal O, Ferno M, Landberg G. Loss of TGFbeta receptor type 2 expression impairs estrogen response and confers tamoxifen resistance. Cancer Res. 2015;75:1457–69. doi: 10.1158/0008-5472.can-14-1583.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kaifu Li
    • 1
  • Hua Kang
    • 1
    Email author
  • Yajun Wang
    • 1
  • Tao Hai
    • 1
  • Guohua Rong
    • 1
  • Haichen Sun
    • 2
  1. 1.Department of General Surgery, Xuanwu HospitalCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Surgery Lab, Xuanwu HospitalCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations