Advertisement

Medical Oncology

, 33:32 | Cite as

KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: pyrosequencing technology and literature review

  • Lei Zhou
  • Yoshifumi Baba
  • Yuki Kitano
  • Keisuke Miyake
  • Xiaobo Zhang
  • Kensuke Yamamura
  • Keisuke Kosumi
  • Takayoshi Kaida
  • Kota Arima
  • Katsunobu Taki
  • Takaaki Higashi
  • Katsunori Imai
  • Daisuke Hashimoto
  • Yoichi Yamashita
  • Akira Chikamoto
  • Toru Beppu
  • Xiaodong Tan
  • Hideo BabaEmail author
Original Paper

Abstract

The oncogenic hallmarks of pancreatic cancer (PC), such as the KRAS, BRAF, and PIK3CA mutations, have been widely investigated. However, almost all of the previous studies were limited by small sample sizes. In addition, previous data on the KRAS mutation and clinical outcomes in PC remain inconclusive. To clarify these data, we examined the mutation status of 126 PC patients and its relationship to clinical outcome. The frequencies of KRAS, BRAF, and PIK3CA mutations were determined from a non-biased database of 126 resected PCs and a high-throughput pyrosequencing assay. KRAS mutations were detected in 109 (86.5 %) of the 126 cases; the most common mutation was c.34G > T (p.G12C), which was present in 80 tumors, followed by c.35G > T (p.G12V) in 52 tumors. The KRAS mutation was not associated with any clinical or pathological features (p > 0.05 in all cases). In addition, the KRAS mutation was unrelated to overall survival (log rank p = 0.21) and cancer-specific survival (log rank p = 0.27). Importantly, the influence of KRAS mutation on patient outcome was not modified by any of the clinical or pathological variables (p for all interactions >0.05). Only one PIK3CA mutation (0.8 %) was detected on exon 9 RS3 (c.1633G > A, p.E545K). The BRAF mutation was not detected in PC. KRAS mutations appear to be unrelated to clinical outcome in PC. BRAF and PIK3CA mutations were extremely rare in PC, suggesting that they play a limited role in PC development.

Keywords

Pancreatic cancer Mutation KRAS BRAF PIK3CA 

Notes

Acknowledgments

This research was funded by the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (Japan Society for the Promotion of Science).

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

12032_2016_745_MOESM1_ESM.tif (754 kb)
Supplementary material 1 (TIFF 754 kb)
12032_2016_745_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)

References

  1. 1.
    Yatsuoka T, Sunamura M, Furukawa T, et al. Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol. 2000;95(8):2080–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(22):2140–1.PubMedGoogle Scholar
  4. 4.
    Bilimoria KY, Bentrem DJ, Ko CY, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the National Cancer Database. Cancer. 2007;110(4):738–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Ulivi P, Arienti C, Amadori D, et al. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol. 2009;220(1):214–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Steelman LS, Stadelman KM, Chappell WH, et al. Akt as a therapeutic target in cancer. Expert Opin Ther Targets. 2008;12(9):1139–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Fitzgerald TL, Lertpiriyapong K, Cocco L, et al. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul. 2015;59:65–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.CrossRefPubMedGoogle Scholar
  10. 10.
    Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle. 2004;3(10):1221–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat. 2002;19(5):479–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn. 2005;7(3):413–21.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shen S, Qin D. Pyrosequencing data analysis software: a useful tool for EGFR, KRAS, and BRAF mutation analysis. Diagn Pathol. 2012;7:56.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen DC, Saarela J, Nuotio I, et al. Comparison of GenFlex tag array and pyrosequencing in SNP genotyping. J Mol Diagn. 2003;5(4):243–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Imamura Y, Morikawa T, Liao X, et al. Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res. 2012;18(17):4753–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ogino S, Meyerhardt JA, Irahara N, et al. KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin Cancer Res. 2009;15(23):7322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC cancer staging manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17(7):1721–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Loriot Y, Mordant P, Deutsch E, et al. Are RAS mutations predictive markers of resistance to standard chemotherapy? Nat Rev Clin Oncol. 2009;6(9):528–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001;93(14):1062–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oliveira-Cunha M, Hadfield KD, Siriwardena AK, et al. EGFR and KRAS mutational analysis and their correlation to survival in pancreatic and periampullary cancer. Pancreas. 2012;41(3):428–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Schultz NA, Roslind A, Christensen IJ, et al. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas. 2012;41(5):759–66.PubMedGoogle Scholar
  24. 24.
    Kawesha A, Ghaneh P, Andren-Sandberg A, et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer. 2000;89(6):469–74.CrossRefPubMedGoogle Scholar
  25. 25.
    Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6(8):2969–72.PubMedGoogle Scholar
  26. 26.
    Lee J, Jang KT, Ki CS, et al. Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer. 2007;109(8):1561–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Sinn BV, Striefler JK, Rudl MA, et al. KRAS mutations in codon 12 or 13 are associated with worse prognosis in pancreatic ductal adenocarcinoma. Pancreas. 2014;43(4):578–83.CrossRefPubMedGoogle Scholar
  28. 28.
    Krasinskas AM, Moser AJ, Saka B, et al. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas. Mod Pathol. 2013;26(10):1346–54.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ogura T, Yamao K, Hara K, et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J Gastroenterol. 2013;48(5):640–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Falasca M, Selvaggi F, Buus R, et al. Targeting phosphoinositide 3-kinase pathways in pancreatic cancer–from molecular signalling to clinical trials. Anticancer Agents Med Chem. 2011;11(5):455–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Grisham RN, Iyer G, Garg K, et al. BRAF mutation is associated with early stage disease and improved outcome in patients with low-grade serous ovarian cancer. Cancer. 2013;119(3):548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moreau S, Saiag P, Aegerter P, et al. Prognostic value of BRAF V600 mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol. 2012;19(13):4314–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Ogura T, Kakuta M, Yatsuoka T, et al. Clinicopathological characteristics and prognostic impact of colorectal cancers with NRAS mutations. Oncol Rep. 2014;32(1):50–6.PubMedGoogle Scholar
  35. 35.
    Mafficini A, Amato E, Fassan M, et al. Reporting tumor molecular heterogeneity in histopathological diagnosis. PLoS One. 2014;9(8):e104979.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17(1):72–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Janku F, Lee JJ, Tsimberidou AM, et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS One. 2011;6(7):e22769.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jimeno A, Tan AC, Coffa J, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 2008;68(8):2841–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Kubo T, Kuroda Y, Kokubu A, et al. Resequencing analysis of the human tyrosine kinase gene family in pancreatic cancer. Pancreas. 2009;38(7):e200–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Immervoll H, Hoem D, Kugarajh K, et al. Molecular analysis of the EGFR–RAS–RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes. Virchows Arch. 2006;448(6):788–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Ishimura N, Yamasawa K, Karim Rumi MA, et al. BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett. 2003;199(2):169–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lei Zhou
    • 1
    • 2
  • Yoshifumi Baba
    • 1
  • Yuki Kitano
    • 1
  • Keisuke Miyake
    • 1
  • Xiaobo Zhang
    • 2
  • Kensuke Yamamura
    • 1
  • Keisuke Kosumi
    • 1
  • Takayoshi Kaida
    • 1
  • Kota Arima
    • 1
  • Katsunobu Taki
    • 1
  • Takaaki Higashi
    • 1
  • Katsunori Imai
    • 1
  • Daisuke Hashimoto
    • 1
  • Yoichi Yamashita
    • 1
  • Akira Chikamoto
    • 1
  • Toru Beppu
    • 1
  • Xiaodong Tan
    • 2
  • Hideo Baba
    • 1
    Email author
  1. 1.Department of Gastroenterological Surgery, Graduate School of Medical ScienceKumamoto UniversityKumamotoJapan
  2. 2.Department of Pancreatic and Thyroidal SurgeryChina Medical University Shengjing HospitalShenyangPeople’s Republic of China

Personalised recommendations