Advertisement

Medical Oncology

, 33:30 | Cite as

Autophagy is associated with cucurbitacin D-induced apoptosis in human T cell leukemia cells

  • Tsukasa Nakanishi
  • Yuan Song
  • Cuiying He
  • Duo Wang
  • Kentaro Morita
  • Junichi Tsukada
  • Tamotsu Kanazawa
  • Yasuhiro YoshidaEmail author
Original Paper

Abstract

We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. In the present study, we investigated the effects of co-treatment with an additional Bcl-xL inhibitor, Z36. Treatment with Z36 induced cell death in leukemia cell lines, with MT-4 cells exhibiting the lowest sensitivity to Z36. Co-treatment of cells with Z36 and CuD resulted in a greater degree of cell death for Hut78 and Jurkat cells than treatment with CuD alone. In contrast, co-treatment of MT-4 cells with Z36 and CuD had a suppressive effect on cell death. The autophagy inhibitor 3-methyladenine (3-MA) suppressed the growth of leukemia cell lines HuT78, Jurkat, MT-1, and MT-4. CuD-induced cell death was enhanced by 3-MA in Jurkat cells, but inhibited in MT-4 cells. Western blotting results revealed cleavage of poly(ADP ribose) polymerase (PARP), supporting CuD-induced cell death; 3-MA enhanced CuD-Z36-induced PARP cleavage. Taken together, our results indicate that autophagy negatively regulates chemical-induced cell death of leukemia cells, and that controlling autophagy could be beneficial in the development of more effective chemotherapies against leukemia.

Keywords

Autophagy Adult T cell leukemia Apoptosis Cucurbitacin D Z36 

Abbreviations

3-MA

3-Methyladenine

ATL

Adult T cell leukemia

CuD

Cucurbitacin D

LC3-II

Light chain 3-II

PARP

Poly-ADP ribose polymerase

PBLs

Peripheral blood lymphocytes

Notes

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 24390159) from the Japan Society for the Promotion of Science to Y. Yoshida.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest that they wish to declare.

Supplementary material

12032_2016_743_MOESM1_ESM.pptx (517 kb)
Supplementary material 1 (PPTX 517 kb)

References

  1. 1.
    Iwanaga M, Watanabe T, Yamaguchi K. Adult T-cell leukemia: a review of epidemiological evidence. Front Microbiol. 2012;3:322.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bazarbachi A, Ghez D, Lepelletier Y, Nasr R, de The H, El-Sabban ME, Hermine O. New therapeutic approaches for adult T-cell leukaemia. Lancet Oncol. 2004;5:664–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Puleston DJ, Simon AK. Autophagy in the immune system. Immunology. 2014;141:1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171:603–14.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193:275–84.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25:795–800.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Nencioni A, Cea M, Montecucco F, Longo VD, Patrone F, Carella AM, Holyoake TL, Helgason GV. Autophagy in blood cancers: biological role and therapeutic implications. Haematologica. 2013;98:1335–43.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bosnjak M, Ristic B, Arsikin K, Mircic A, Suzin-Zivkovic V, Perovic V, Bogdanovic A, Paunovic V, Markovic I, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death. PLoS ONE. 2014;9:e94374.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pierdominici M, Barbati C, Vomero M, Locatelli SL, Carlo-Stella C, Ortona E, Malorni W. Autophagy as a pathogenic mechanism and drug target in lymphoproliferative disorders. FASEB J. 2014;28:524–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery. Curr Opin Biotechnol. 2014;30:230–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaushik U, Aeri V, Mir SR. Cucurbitacins—an insight into medicinal leads from nature. Pharmacogn Rev. 2015;9:12–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ding N, Yamashita U, Matsuoka H, Sugiura T, Tsukada J, Noguchi J, Yoshida Y. Apoptosis induction through proteasome inhibitory activity of cucurbitacin D in human T-cell leukemia. Cancer. 2011;117:2735–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Song Y, Ding N, Kanazawa T, Yamashita U, Yoshida Y. Cucurbitacin D is a new inflammasome activator in macrophages. Int Immunopharmacol. 2013;17:1044–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Lin J, Zheng Z, Li Y, Yu W, Zhong W, Tian S, Zhao F, Ren X, Xiao J, Wang N, Liu S, Wang L, Sheng F, Chen Y, Jin C, Li S, Xia B. A novel Bcl-XL inhibitor Z36 that induces autophagic cell death in Hela cells. Autophagy. 2009;5:314–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshida Y, Liu J, Sugiura T, Ishidao T, Ueno S, Yanagita H, Fueta Y, Kunugita N, Hori H, Yamashita U. The indoor air pollutant 2-ethyl-hexanol activates CD4 cells. Chem Biol Interact. 2009;177:137–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang X, Li W, Wang C, Leng X, Lian S, Feng J, Li J, Wang H. Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem. 2014;385:265–75.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jia L, Gopinathan G, Sukumar JT, Gribben JG. Blocking autophagy prevents bortezomib-induced NF-kappaB activation by reducing I-kappaBalpha degradation in lymphoma cells. PLoS ONE. 2012;7:e32584.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu G, Li H, Ji Z, Jiang X, Lei Y, Sun M. Inhibition of autophagy by autophagic inhibitors enhances apoptosis induced by bortezomib in non-small cell lung cancer cells. Biotechnol Lett. 2014;36:1171–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Cagnetta A, Cea M, Calimeri T, Acharya C, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Zhong MY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC. Intracellular NAD(+) depletion enhances bortezomib-induced anti-myeloma activity. Blood. 2013;122:1243–55.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Macintosh RL, Ryan KM. Autophagy in tumour cell death. Semin Cancer Biol. 2013;23:344–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A. Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther. 2009;8:1974–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Fang J, Rhyasen G, Bolanos L, Rasch C, Varney M, Wunderlich M, Goyama S, Jansen G, Cloos J, Rigolino C, Cortelezzi A, Mulloy JC, Oliva EN, Cuzzola M, Starczynowski DT. Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood. 2012;120:858–67.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 2007;110:313–22.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schafer BW, Schrappe M, Stanulla M, Bourquin JP. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Investig. 2010;120:1310–23.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ren T, Takahashi Y, Liu X, Loughran TP, Sun SC, Wang HG, Cheng H. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene. 2015;34:334–45. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tsukasa Nakanishi
    • 1
  • Yuan Song
    • 1
    • 3
  • Cuiying He
    • 1
  • Duo Wang
    • 1
  • Kentaro Morita
    • 1
  • Junichi Tsukada
    • 2
  • Tamotsu Kanazawa
    • 1
  • Yasuhiro Yoshida
    • 1
    Email author
  1. 1.Department of Immunology and ParasitologyUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
  2. 2.Department of HematologyUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
  3. 3.Department of Clinical LaboratoryFourth Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations