Skip to main content

Advertisement

Log in

Are there any new insights for G-CSF and/or AMD3100 in chemotherapy of haematological malignants?

  • Review Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

AML is a common life-threatening blood system malignancy. The treatment of AML continues to face greater challenges. An abnormal haematopoietic niche with high adhesion and proliferation might be the root cause of resistance and relapse. Most leukaemia cells are stored in the endosteal niche and recess in the G0 phase, and they are not sensitive to varieties of radiotherapies and chemotherapies. G-CSF and AMD3100 are increasingly used in priming chemotherapy. G-CSF can promote leukaemia cells to the cell cycle, which improves the complete remission rate of leukaemia patients. AMD3100, the novel CXCR4 antagonist, could also potentially promote leukaemia cells to cell cycle and improve the susceptibility of leukaemia cells to chemotherapeutic agents. The combination of them enhances anti-leukaemia effect. So in this review, we explore the function of G-CSF and/or AMD3100 in the priming chemotherapy of haematological malignants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kuwatsuka Y, Miyamura K, Suzuki R, et al. Hematopoietic stem cell transplantation for core binding factor acute myeloid leukemia: t (8; 21) and inv (16) represent different clinical outcomes. Blood. 2009;113:2096–103.

    Article  CAS  PubMed  Google Scholar 

  2. Horibe K, Takimoto T, Yokozawa T, et al. Phase I study of nelarabine in patients with relapsed or refractory T-ALL/T-LBL. Rinsho Ketsueki. 2011;52:406–15.

    PubMed  Google Scholar 

  3. Zhu X, Ma Y, Liu D. Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights. J Hematol Oncol. 2010;3:17.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood. 2009;114:1150–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Buss EC, Ho AD. Leukemia stem cells. Int J Cancer. 2011;129:2328–36.

    Article  CAS  PubMed  Google Scholar 

  6. Walenda T, Bokermann G, Ventura Ferreira MS, et al. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp Hematol. 2011;39:617–28.

    Article  CAS  PubMed  Google Scholar 

  7. Eliasson P, Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol. 2010;221:17–22.

    Article  Google Scholar 

  8. Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–99.

    Article  CAS  PubMed  Google Scholar 

  9. Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vagima Y, Lapid K, Kollet O, et al. Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol. 2011;750:277–89.

    Article  CAS  PubMed  Google Scholar 

  11. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    Article  CAS  PubMed  Google Scholar 

  12. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tavor S, Petit I. Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia. Semin Cancer Biol. 2010;20:178–85.

    Article  CAS  PubMed  Google Scholar 

  15. Foudi A, Jarrier P, Zhang Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4-/-chimeric mice. Blood. 2006;107:2243–51.

    Article  CAS  PubMed  Google Scholar 

  16. Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol. 2008;15:49–58.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rettig MP, Ramirez P, Nervi B, DiPersio JF. CXCR4 and mobilization of hematopoietic precursors. Methods Enzymol. 2009;460:57–90.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Patel S, Abdelouahab H, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis. 2012;3:e396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Broxmeyer HE, Kohli L, Kim H, et al. Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol. 2003;73:630–8.

    Article  CAS  PubMed  Google Scholar 

  21. Shen L, Gao Y, Qian J, et al. A novel mechanism for endothelial progenitor cells homing: the SDF-1/CXCR4-Rac pathway may regulate endothelial progenitor cells homing through cellular polarization. Med Hypotheses. 2011;76(2):256–8.

    Article  CAS  PubMed  Google Scholar 

  22. Morikawa K, Morikawa S, Nakamura M, et al. Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. Br J Haematol. 2002;118:296–304.

    Article  CAS  PubMed  Google Scholar 

  23. Camurdanoglu BZ, Gunes E, et al. The effect of granulocyte colony stimulating factor receptor gene missense single nucleotide polymorphisms on peripheral blood stem cell enrichment. Cytokine. 2013;61:572–7.

    Article  CAS  PubMed  Google Scholar 

  24. Deng CH, Zhang QP. Leukemia stem cells in drug resistance and metastasis. Chin Med J. 2010;123:954–60.

    PubMed  Google Scholar 

  25. Rombouts EJ, Pavic B, Löwenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104:550–7.

    Article  CAS  PubMed  Google Scholar 

  26. De La Luz Sierra M, Gasperini P, McCormick PJ, et al. Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood. 2007;110:2276–85.

    Article  Google Scholar 

  27. Kitagawa J, Hara T, Tsurumi H, et al. Cell cycle-dependent priming action of granulocyte colony-stimulating factor (G-CSF) enhances in vitro apoptosis induction by cytarabine and etoposide in leukemia cell lines. J Clin Exp Hematopathol. 2010;50:99–105.

    Article  Google Scholar 

  28. Ossenkoppele GJ, Graveland WJ, Sonneveld P, et al. The value of fludarabine in addition to ARA-C and G-CSF in the treatment of patients with high-risk myelodysplastic syndromes and AML in elderly patients. Blood. 2004;103:2908–13.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada K, Furusawa S, Saito K, et al. Concurrent use of granulocyte colony-stimulating factor with low-dose cytosine arabinoside and aclarubicin for previously treated acute myelogenous leukemia a pilot study. Leukemia. 1995;9:10–4.

    CAS  PubMed  Google Scholar 

  30. Thomas X, Raffoux E, Renneville A, et al. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer. 2010;116:1725–32.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas X, Raffoux E, Botton S, et al. Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid Leukemia: a trial by the Acute Leukemia French Association (ALFA) Group. Leukemia. 2007;21:453–61.

    Article  CAS  PubMed  Google Scholar 

  32. Lyman GH, Dale DC. Long-term outcomes of myeloid growth factor treatment. J Natl Compr Canc Netw. 2011;9:945–52.

    CAS  PubMed  Google Scholar 

  33. Azab AK, Runnels JM, Pitsillides C, et al. The CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6206–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Heuser M, Kuchenbauer F, Argiropoulos B, et al. Priming reloaded? [letter]. Blood. 2009;114(4):925–6.

    Article  CAS  PubMed  Google Scholar 

  36. Welschinger R, Liedtke F, Basnett J, et al. Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol. 2013;41:293–302.

    Article  CAS  PubMed  Google Scholar 

  37. Uy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stamatopoulos B, Meuleman N, Bruyn CD, et al. AMD3100 disrupts cross-talk between chronic lymphocytic leukemia cells and their microenvironment: preclinical evidence for its association with CLL treatments. Haematologica. 2012;97:608–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vianello F, Villanova F, Tisato V, et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95:1081–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation (No. 81000195), the Key Discipline of Medical Science of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yan Kong.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, ZH., Zeng, DF., Ma, Yy. et al. Are there any new insights for G-CSF and/or AMD3100 in chemotherapy of haematological malignants?. Med Oncol 32, 262 (2015). https://doi.org/10.1007/s12032-015-0705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0705-9

Keywords

Navigation