Advertisement

Medical Oncology

, 32:208 | Cite as

Regulation of BAX/BCL2 gene expression in breast cancer cells by docetaxel-loaded human serum albumin nanoparticles

  • Marzieh Kordezangeneh
  • Shiva IraniEmail author
  • Reza Mirfakhraie
  • Mehdi Esfandyari-Manesh
  • Fatemeh Atyabi
  • Rassoul DinarvandEmail author
Original Paper

Abstract

Today, using nanoparticle-based drug delivery systems has expanded to avoid anticancer side effects. Taxanes are important chemotherapeutic agents in the treatment of metastatic breast cancer. In this study, docetaxel (DTX)-loaded human serum albumin (HSA) nanoparticles (NPs) were prepared and characterized. Drug toxicity of the nanoparticles was measured by MTT assay with different drug concentrations (0.01, 0.1, 0.5, 1 and 5 μM) at different incubation times (24, 48 and 72 h). Expression of BAX/BCL2 mRNA levels was determined by real-time PCR. The size of NPs prepared and used in our study was about 147 nm with surface charge of −29.6 mV. Results obtained from MTT assay showed that 0.5 μM of free drug had 50 % toxicity on MCF-7 cells after 48-h incubation. Real-time PCR results showed an increase in expression of BAX and no change for BCL2. In conclusion, a significant overexpression of BAX gene and changes in BAX/BCL2 ratio were observed for DTX-loaded HSA nanoparticles compared with free DTX and may provide a potential therapy to inhibit anticancer drug resistance.

Keywords

Breast cancer Docetaxel Nanoparticles BAX BCL2 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Taghavi A, Fazeli Z, Vahedi M, Baghestani A, Pourheseingholi A, Barzegar F, Pourheseingholi M. Increased trend of breast cancer mortality in iran. APJCP. 2012;13(1):367–70.PubMedGoogle Scholar
  2. 2.
    Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharges. Phys. 2005;38:R1–24.Google Scholar
  3. 3.
    Zumoff B. Adjuvant treatment in breast cancer. Lancet. 1992;339:423–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith G, Henderson IC. New treatments for breast cancer. Semin Oncol. 1996;23:506–28.PubMedGoogle Scholar
  5. 5.
    Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997;57:229–33.PubMedGoogle Scholar
  6. 6.
    Gumerlock P, Mack P, Gustafsson M, Togonon M, Gandara D. p27 induction as a potential p53-independent mechanism of apoptotic response to docetaxel in non-small cell lung (NSCL) and prostate carcinomas (CaP). Clin Cancer Res. 1999;5:s3859.Google Scholar
  7. 7.
    Herbst RS, Khuri FR. Mode of action of docetaxel a basis for combination with novel anticancer agents. Cancer Treat Rev. 2003;29:407–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Bissery MC, Nohynek G, Sanderink GJ, Lavelle F. Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: preclinical experience. Anti-Cancer Drugs. 1995;6:339–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.CrossRefGoogle Scholar
  10. 10.
    Panday VRN, Huizing MT, Huinink WWTB, Vermorken JB, Beijnen JH. Hypersensitivity reactions to the taxanes paclitaxel and docetaxel. Clin Drug Invest. 1997;14:418–27.CrossRefGoogle Scholar
  11. 11.
    Riley T, Stolnik S, Heald CR, Xiong CD, Garnett MC, Illum L, Davis SS. Physicochemical evaluation of nanoparticles assembled from poly (lactic acid)-poly (ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir. 2001;17:3168–74.CrossRefGoogle Scholar
  12. 12.
    Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300:615–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Deim K. Synopsis of plasma proteins scientific tables, vol. 6. DocumentaGeigy: Geigy Pharmaceuticals, Ardsley; 1962.Google Scholar
  14. 14.
    Sebak S, Mirzaei M, Malhorta M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomed. 2010;5:525–32.Google Scholar
  15. 15.
    Kratz F, Muller DR, Hofmann I, Drevs J, Unger C. A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J Med Chem. 2000;43:1253–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Giannoukakis N. Current opinion in investigational drugs (London, England: 2000). CJC-1131. 2003;4:1245–9.Google Scholar
  17. 17.
    Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR. Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci. 2008;105:20327–32.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Walensky LD, Gavathiotis E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci. 2011;36:642–52.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299–310.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bai L, Wang S. Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med. 2014;65:139–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Green DR, Beere H, Hickman JA, Dive C. Apoptosis and cancer chemotherapy: mechanisms of apoptosis. New Jersey: Humana Press; 1999. p. 157–74.CrossRefGoogle Scholar
  23. 23.
    Siervo-Sassi RR, Marrangoni A, Feng X, Naoumova N, Winans M, Edwards RP, Lokshin A. Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines. Cancer Lett. 2003;190:61–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomadaki H, Scorilas A. Breast cancer cells response to the antineoplastic agentscisplatin, carboplatin, and doxorubicin at the mRNA expression levels of distinct apoptosis-related genes, including the new member, BCL2L12. Ann N Y Acad Sci. 2007;1095:35–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157:168–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen W, Gu B, Wang H, Pan J, Lu W, Hou H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int J Pharm. 2008;362:133–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, Maier-Borst W, Heene DL. Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol. 1997;26:77–100.PubMedCrossRefGoogle Scholar
  28. 28.
    John TA, Vogel S, Tiruppathi C, Malik AB, Minshall RD. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol. 2003;284:L187–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12:1317–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanoedicine. 2009;4:99–105.Google Scholar
  32. 32.
    Chew L, Chuen V. Cutaneous reaction associated with weekly docetaxel administration. J Oncol Pharm Pract. 2009;15:29–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Akay BN, Unlu E, Buyukcelik A, Akyol A. Photosensitive rash in associationwithporphyrin biosynthesis possibly induced by docetaxel andtrastuzumab therapy in a patient with metastatic breast carcinoma. Jpn J Clin Oncol. 2010;40:989–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Manoochehri S, Darvish B, Kamalinia G, Amini M, Fallah M, Ostad SN, Atyabi F, Dinarvand R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru J Pharm Sci. 2013;21:58.CrossRefGoogle Scholar
  35. 35.
    John TA, Vogel S, Minshall RD, Ridge K, Tiruppathi C, Malik AB. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J Physol. 2001;533:547–59.CrossRefGoogle Scholar
  36. 36.
    Fritzsche T, Schnolzer M, Fiedler S, Weigand M, Wiessler M, Frei E. Isolation and identification of heterogeneous nuclear ribonucleoproteins (hnRNP) from purified plasma membranes of human tumour cell lines as albumin-binding proteins. Biochem Pharmacol. 2004;67:655–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Sluis R, Bhujwalla Z, Raghunand N, Ballesteros P, Alvarez J, Cerdan S, Galons J-P, Gillies RJ. In vivo imaging of extracellular pH using 1 H MRSI. Magn Reson Med. 1999;41:743–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+ /H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Kanani N, Neumann E, Frei E, Funk D, Becker MD, Schrenk H-H, Müller-Ladner U, Fiehn C. Electroplating-basic principles processes native albumin for targeted drug delivery. Expert Opn Drug Deiv. 2010;7:915–25.CrossRefGoogle Scholar
  40. 40.
    Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3:697–707.PubMedCrossRefGoogle Scholar
  41. 41.
    Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol. 2003;39:615–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Kraus LA, Samuel SK, Schmid SM, Dykes DJ. The mechanism of action of docetaxel (Taxotere®) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs. 2003;21:259–68.PubMedCrossRefGoogle Scholar
  43. 43.
    Nizar MM, Yufang W, Kelly AK, Xu DZ, Peter H. Dcoetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther. 2007;6:752–61.CrossRefGoogle Scholar
  44. 44.
    Lo YL. Phospholipids as multidrug resistance modulators of the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochem Pharmacol. 2000;60:1381–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release. 2003;93:151–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Honma K, Iwao KK, Takeshita F, Yamamoto Y, Yoshida T, Nishio K, Nagahara S, Kato K, Ochiya T. RPN2 gene confers docetaxel resistance in breast cancer. Nat Med. 2008;14:939–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marzieh Kordezangeneh
    • 1
  • Shiva Irani
    • 1
    Email author
  • Reza Mirfakhraie
    • 2
  • Mehdi Esfandyari-Manesh
    • 3
  • Fatemeh Atyabi
    • 3
    • 4
  • Rassoul Dinarvand
    • 3
    • 4
    Email author
  1. 1.Department of Biology, School of Basic Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Pharmaceutics, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations