Skip to main content

Advertisement

Log in

Pericytes in sarcomas of bone

  • Review Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pericytes are mesenchymal cells that closely enwrap small blood vessels, lying in intimate association with the endothelium. Pericytes have recently gained attention as an important mediator of vascular biology and angiogenesis in cancer. Although better studied in carcinoma, pericytes have known interaction with sarcomas of bone, including Ewing’s sarcoma, osteosarcoma, and chondrosarcoma. Best studied is Ewing’s sarcoma (ES), which displays a prominent perivascular growth pattern. Signaling pathways of known importance in intratumoral pericytes in ES include Notch, PDGF/PDGFR-β, and VEGF signaling. In summary, pericytes serve important functions in the tumor microenvironment. Improved understanding of pericyte biology may hold significant implications for the development of new therapies in sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4.

    Article  CAS  PubMed  Google Scholar 

  2. Betsholtz C, Lindblom P, Gerhardt H. Role of pericytes in vascular morphogenesis. EXS. 2005;94:115–25.

    PubMed  Google Scholar 

  3. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  4. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.

    Article  CAS  PubMed  Google Scholar 

  5. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996;32(4):687–98.

    Article  CAS  PubMed  Google Scholar 

  6. Stark K, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2013;14(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  7. Schönfelder U, et al. In situ observation of living pericytes in rat retinal capillaries. Microvasc Res. 1998;56(1):22–9.

    Article  PubMed  Google Scholar 

  8. Lindahl P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    Article  CAS  PubMed  Google Scholar 

  9. Hellström M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Abramsson A, et al. Analysis of mural cell recruitment to tumor vessels. Circulation. 2002;105(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cooke VG, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Xian X, et al. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116(3):642–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lindblom P, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17(15):1835–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Article  CAS  PubMed  Google Scholar 

  15. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.

    Article  CAS  PubMed  Google Scholar 

  16. Shih SC, et al. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci USA. 2003;100(26):15859–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ozerdem U, et al. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn. 2001;222(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  18. Greenhalgh SN, Iredale JP, Henderson NC, Origins of fibrosis: pericytes take centre stage. F1000Prime Rep. 2013;5:37.

  19. Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens. 2011;20(3):297–305.

    Article  PubMed  Google Scholar 

  20. Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol. 2012;44(11):1800–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Quaegebeur A, Segura I, Carmeliet P. Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron. 2010;68(3):321–3.

    Article  CAS  PubMed  Google Scholar 

  22. Farrington-Rock C, et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110(15):2226–32.

    Article  CAS  PubMed  Google Scholar 

  23. Paquet-Fifield S, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest. 2009;119(9):2795–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Murray IR, et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 2014;71(8):1353–74.

    Article  CAS  PubMed  Google Scholar 

  25. Gerhardt H, Semb H. Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl). 2008;86(2):135–44.

    Article  Google Scholar 

  26. Morikawa S, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cao Y, et al. Pericyte coverage of differentiated vessels inside tumor vasculature is an independent unfavorable prognostic factor for patients with clear cell renal cell carcinoma. Cancer. 2013;119(2):313–24.

    Article  CAS  PubMed  Google Scholar 

  28. Xu L, et al. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res. 2005;65(13):5711–9.

    Article  CAS  PubMed  Google Scholar 

  29. Paulsson J, et al. Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009;175(1):334–41.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kitadai Y, et al. Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer. 2006;119(11):2567–74.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, et al. Effect of platelet-derived growth factor-B on renal cell carcinoma growth and progression. Urol Oncol. 2015;33(4):168.e17–27.

  32. Minami Y, et al. Prostaglandin I2 analog suppresses lung metastasis by recruiting pericytes in tumor angiogenesis. Int J Oncol. 2015;46(2):548–54.

    PubMed  Google Scholar 

  33. Delattre O, et al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331(5):294–9.

    Article  CAS  PubMed  Google Scholar 

  34. Downing JR, et al. Detection of the (11;22)(q24;q12) translocation of Ewing’s sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction. Am J Pathol. 1993;143(5):1294–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Maheshwari AV, Cheng EY. Ewing sarcoma family of tumors. J Am Acad Orthop Surg. 2010;18(2):94–107.

    PubMed  Google Scholar 

  36. Subbiah V, et al. Ewing’s sarcoma: standard and experimental treatment options. Curr Treat Options Oncol. 2009;10(1–2):126–40.

    Article  PubMed  Google Scholar 

  37. Yu L, et al. Vasculogenesis driven by bone marrow-derived cells is essential for growth of Ewing’s sarcomas. Cancer Res. 2010;70(4):1334–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Reddy K, et al. Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing’s tumor vessels. Mol Cancer Res. 2008;6(6):929–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhou Z, et al. Bone marrow cells participate in tumor vessel formation that supports the growth of Ewing’s sarcoma in the lung. Angiogenesis. 2011;14(2):125–33.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gridley T. Notch signaling in the vasculature. Curr Top Dev Biol. 2010;92:277–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007;21(20):2511–24.

    Article  CAS  PubMed  Google Scholar 

  42. Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. BioEssays. 2004;26(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  43. Thomas JL, et al. Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cell Mol Life Sci. 2013;70(10):1779–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Villa N, et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001;108(1–2):161–4.

    Article  CAS  PubMed  Google Scholar 

  45. Liu H, Kennard S, Lilly B. NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res. 2009;104(4):466–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kofler NM, et al. Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2011;2(12):1106–16.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Zhou Z, Yu L, Kleinerman ES. EWS-FLI-1 regulates the neuronal repressor gene REST, which controls Ewing sarcoma growth and vascular morphology. Cancer. 2014;120(4):579–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stewart KS, et al. Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood. 2011;117(2):719–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Schadler KL, et al. Delta-like ligand 4 plays a critical role in pericyte/vascular smooth muscle cell formation during vasculogenesis and tumor vessel expansion in Ewing’s sarcoma. Clin Cancer Res. 2010;16(3):848–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene. 2008;27(38):5132–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rehman AO, Wang CY. Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol. 2006;16(6):293–300.

    Article  CAS  PubMed  Google Scholar 

  52. Lindahl P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7(4):452–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Uren A, et al. Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing’s sarcoma cells. Oncogene. 2003;22(15):2334–42.

    Article  CAS  PubMed  Google Scholar 

  55. Wang YX, et al. Inhibiting platelet-derived growth factor beta reduces Ewing’s sarcoma growth and metastasis in a novel orthotopic human xenograft model. In Vivo. 2009;23(6):903–9.

    CAS  PubMed  Google Scholar 

  56. González I, et al. Imatinib inhibits proliferation of Ewing tumor cells mediated by the stem cell factor/KIT receptor pathway, and sensitizes cells to vincristine and doxorubicin-induced apoptosis. Clin Cancer Res. 2004;10(2):751–61.

    Article  PubMed  Google Scholar 

  57. Merchant MS, et al. Potential use of imatinib in Ewing’s Sarcoma: evidence for in vitro and in vivo activity. J Natl Cancer Inst. 2002;94(22):1673–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bond M, et al. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer. 2008;50(2):254–8.

    Article  PubMed  Google Scholar 

  59. Chao J, et al. Phase II clinical trial of imatinib mesylate in therapy of KIT and/or PDGFRalpha-expressing Ewing sarcoma family of tumors and desmoplastic small round cell tumors. Anticancer Res. 2010;30(2):547–52.

    CAS  PubMed  Google Scholar 

  60. Chugh R, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009;27(19):3148–53.

    Article  CAS  PubMed  Google Scholar 

  61. Dubois SG, et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children’s oncology group study. Clin Cancer Res. 2011;17(15):5113–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wang Y, et al. Platelet-derived growth factor receptor beta inhibition increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity: imatinib and TRAIL dual therapy. Cancer. 2010;116(16):3892–902.

    Article  CAS  PubMed  Google Scholar 

  63. Reddy K, et al. Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing’s sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer. 2008;123(4):831–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hamdan R, Zhou Z, Kleinerman ES. Blocking SDF-1alpha/CXCR4 downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation and tumor vascular expansion in Ewing tumors. Mol Cancer Ther. 2014;13(2):483–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hagedorn M, et al. VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Dev Dyn. 2004;230(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  66. Reddy K, et al. VEGF165 expression in the tumor microenvironment influences the differentiation of bone marrow-derived pericytes that contribute to the Ewing’s sarcoma vasculature. Angiogenesis. 2008;11(3):257–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lee TH, et al. Production of VEGF165 by Ewing’s sarcoma cells induces vasculogenesis and the incorporation of CD34 + stem cells into the expanding tumor vasculature. Int J Cancer. 2006;119(4):839–46.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou Z, et al. Suppression of Ewing’s sarcoma tumor growth, tumor vessel formation, and vasculogenesis following anti vascular endothelial growth factor receptor-2 therapy. Clin Cancer Res. 2007;13(16):4867–73.

    Article  CAS  PubMed  Google Scholar 

  69. Greenberg JI, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456(7223):809–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Glade Bender JL, et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2008;26(3):399–405.

    Article  PubMed  Google Scholar 

  71. Widemann BC, et al. A phase I trial and pharmacokinetic study of sorafenib in children with refractory solid tumors or leukemias: a Children’s Oncology Group Phase I Consortium report. Clin Cancer Res. 2012;18(21):6011–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  73. Rytting M, et al. Osteosarcoma in preadolescent patients. Clin Orthop Relat Res. 2000;373:39–50.

    Article  PubMed  Google Scholar 

  74. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19(3):292–315.

    Article  CAS  PubMed  Google Scholar 

  75. Fletcher CDM, et al. World health organization classifications of tumours of soft tissue and bone. Lyon: International Agency for Research on Cancer; 2013.

    Google Scholar 

  76. Leddy LR, Holmes RE. Chondrosarcoma of bone. Cancer Treat Res. 2014;162:117–30.

    Article  PubMed  Google Scholar 

  77. Hemingway F, et al. Smooth muscle actin expression in primary bone tumours. Virchows Arch. 2012;460(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  78. McGary EC, et al. Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. Clin Cancer Res. 2002;8(11):3584–91.

    CAS  PubMed  Google Scholar 

  79. Kalinski T, et al. Heterogeneity of angiogenesis and blood vessel maturation in cartilage tumors. Pathol Res Pract. 2009;205(5):339–45.

    Article  PubMed  Google Scholar 

  80. Engin F, et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet. 2009;18(8):1464–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Zhang P, et al. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene. 2010;29(20):2916–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Hughes DP. How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res. 2009;152:479–96.

    Article  PubMed  Google Scholar 

  83. Tanaka M, et al. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer. 2009;100(12):1957–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kuzmanov A, et al. Overexpression of factor inhibiting HIF-1 enhances vessel maturation and tumor growth via platelet-derived growth factor-C. Int J Cancer. 2012;131(5):E603–13.

    Article  CAS  PubMed  Google Scholar 

  85. Niu F, et al. Identification and functional analysis of differentially expressed genes related to metastatic osteosarcoma. Asian Pac J Cancer Prev. 2014;15(24):10797–801.

    Article  PubMed  Google Scholar 

  86. Maniscalco L, et al. PDGFs and PDGFRs in canine osteosarcoma: new targets for innovative therapeutic strategies in comparative oncology. Vet J. 2013;195(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  87. Franchi A, et al. Dedifferentiated peripheral chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of four cases. Virchows Arch. 2012;460(3):335–42.

    Article  PubMed  Google Scholar 

  88. Sulzbacher I, et al. Platelet-derived growth factor-alpha receptor expression supports the growth of conventional chondrosarcoma and is associated with adverse outcome. Am J Surg Pathol. 2001;25(12):1520–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by the UCLA Department of Pathology and Laboratory Medicine, the UCLA Daljit S. and Elaine Sarkaria Fellowship award, and the Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation. The authors thank A. S. James for his excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron W. James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Nguyen, V., Nguyen, A. et al. Pericytes in sarcomas of bone. Med Oncol 32, 202 (2015). https://doi.org/10.1007/s12032-015-0651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0651-6

Keywords

Navigation