Advertisement

Medical Oncology

, 32:206 | Cite as

MK-2206 induces apoptosis of AML cells and enhances the cytotoxicity of cytarabine

  • Jeng-Wei Lu
  • Yu-Min Lin
  • Yen-Ling Lai
  • Chien-Yuan Chen
  • Chung-Yi Hu
  • Hwei-Fang Tien
  • Da-Liang OuEmail author
  • Liang-In LinEmail author
Original Paper

Abstract

Genetic alterations in the PI3K/AKT cascade have been linked to various human cancers including acute myeloid leukemia (AML) and have emerged to be promising targets for treatment. In this study, we explored the molecular mechanism and clinical implication of a specific allosteric AKT inhibitor, MK-2206, in the treatment of AML. Four leukemia cell lines, MV-4-11, MOLM-13, OCI/AML3, and U937, were used. Apoptosis and cell cycle distribution were determined by flow cytometry analysis. Expression of anti-apoptotic protein family and glycogen synthase kinase 3β (GSK3β) signaling was determined by western blotting. Drug combination effects of MK-2206 with cytarabine were evaluated by cell proliferation assay, and the combination index values were calculated by CompuSyn software. MK-2206 had no effect on normal peripheral blood mononuclear cells, but induced G1-phase arrest and apoptosis in leukemia cells. Among anti-apoptotic Bcl-2 family members, only myeloid cell leukemia-1 (Mcl-1) was significantly suppressed. Mcl-1 suppression by MK-2206 was closely associated with decreased GSK3β phosphorylation at Ser9, an event leads to GSK3β activation. Furthermore, the effect of MK-2206 on Mcl-1 downregulation was abolished by GSK3β inhibitor, lithium chloride and proteasome inhibitor, MG-132, suggesting that MK-2206 acted through a GSK3β-mediated, proteasome-dependent protein degradation. In addition, co-administration of MK-2206 with cytarabine could enhance the cytotoxic efficacy of cytarabine in leukemia cell lines. In conclusion, we have demonstrated that MK-2206 is an active agent in AML and its efficacy as in combination with cytarabine is implicated.

Keywords

Acute myeloid leukemia MK-2206 Mcl-1 GSK3β AKT inhibitor 

Notes

Acknowledgments

This study was supported by the research Grants from the National Science Council (NSC 99-2320-B-002-018-MY3; NSC 100-2320-B-002-074-MY3) and National Taiwan University Hospital (NTUH.101-S1833), Taiwan. We would like to thank Editage for providing editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest relating to the publication of this manuscript.

References

  1. 1.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu R, Liu D, Trink E, Bojdani E, Ning G, Xing M. The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J Clin Endocrinol Metab. 2011;96(4):E577–85.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Knowles JA, Golden B, Yan L, Carroll WR, Helman EE, Rosenthal EL. Disruption of the AKT pathway inhibits metastasis in an orthotopic model of head and neck squamous cell carcinoma. Laryngoscope. 2011;121(11):2359–65.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Cheng Y, Ren X, Zhang Y, Patel R, Sharma A, Wu H, et al. eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt Inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206. Cancer Res. 2011;71(7):2654–63.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F, et al. Cytotoxic activity of the novel Akt inhibitor, MK-2206 T-cell acute lymphoblastic leukemia. Leukemia. 2012;26(11):2336–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Petrich AM, Leshchenko V, Kuo PY, Xia B, Thirukonda VK, Ulahannan N, et al. Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma. Clin Cancer Res. 2012;18(9):2534–44.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ding W, Shanafelt TD, Lesnick CE, Erlichman C, Leis JF, Secreto C, et al. Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 2014;164(1):146–50.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol. 2011;29(35):4688–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T. Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. Leukemia. 2004;18(8):1438–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia. 2003;17(5):995–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Gorlick R, Maris JM, Houghton PJ, Lock R, Carol H, Kurmasheva RT, et al. Testing of the Akt/PKB inhibitor MK-2206 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2012;59(3):518–24.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I, et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood. 1987;70(1):192–9.PubMedGoogle Scholar
  18. 18.
    Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y, et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia. 1997;11(9):1469–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Quentmeier H, Reinhardt J, Zaborski M, Drexler HG. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 2003;17(1):120–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Quentmeier H, Martelli MP, Dirks WG, Bolli N, Liso A, Macleod RA, et al. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia. 2005;19(10):1760–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Lehmann MH. Recombinant human granulocyte-macrophage colony-stimulating factor triggers interleukin-10 expression in the monocytic cell line U937. Mol Immunol. 1998;35(8):479–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Ou DL, Lee BS, Chang YC, Lin LI, Liou JY, Hsu C, et al. Potentiating the efficacy of molecular targeted therapy for hepatocellular carcinoma by inhibiting the insulin-like growth factor pathway. PLoS One. 2013;8(6):e66589.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kikushige Y, Yoshimoto G, Miyamoto T, Iino T, Mori Y, Iwasaki H, et al. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol. 2008;180(11):7358–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY, et al. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol. 2007;27(11):4006–17.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 2006;21(6):749–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Chou TC, Talalay P. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Lamba JK, Crews KR, Pounds SB, Cao X, Gandhi V, Plunkett W, et al. Identification of predictive markers of cytarabine response in AML by integrative analysis of gene-expression profiles with multiple phenotypes. Pharmacogenomics. 2011;12(3):327–39.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Martelli AM, Evangelisti C, Chappell W, Abrams SL, Basecke J, Stivala F, et al. Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia. 2011;25(7):1064–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100(1):194–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Rahmani M, Anderson A, Habibi JR, Crabtree TR, Mayo M, Harada H, et al. The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. Blood. 2009;114(20):4507–16.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kim KT, Baird K, Davis S, Piloto O, Levis M, Li L, et al. Constitutive Fms-like tyrosine kinase 3 activation results in specific changes in gene expression in myeloid leukaemic cells. Br J Haematol. 2007;138(5):603–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Kasper S, Breitenbuecher F, Heidel F, Hoffarth S, Markova B, Schuler M, et al. Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer J. 2012;2(3):e60.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res. 2014;20(8):2226–35.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM. Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett. 2009;274(1):16–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Rahmani M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005;280(42):35217–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999;19(9):6195–206.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Shingu T, Yamada K, Hara N, Moritake K, Osago H, Terashima M, et al. Synergistic augmentation of antimicrotubule agent-induced cytotoxicity by a phosphoinositide 3-kinase inhibitor in human malignant glioma cells. Cancer Res. 2003;63(14):4044–7.PubMedGoogle Scholar
  40. 40.
    Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1(9):707–17.PubMedGoogle Scholar
  41. 41.
    O’Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG. Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia. 2000;14(4):602–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Simioni C, Martelli AM, Cani A, Cetin-Atalay R, McCubrey JA, Capitani S, et al. The AKT inhibitor MK-2206 is cytotoxic in hepatocarcinoma cells displaying hyperphosphorylated AKT-1 and synergizes with conventional chemotherapy. Oncotarget. 2013;4(9):1496–506.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Yap TA, Yan L, Patnaik A, Tunariu N, Biondo A, Fearen I, et al. Interrogating two schedules of the AKT inhibitor MK-2206 in patients with advanced solid tumors incorporating novel pharmacodynamic and functional imaging biomarkers. Clin Cancer Res. 2014;20(22):5672–85.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jeng-Wei Lu
    • 1
  • Yu-Min Lin
    • 1
  • Yen-Ling Lai
    • 1
  • Chien-Yuan Chen
    • 4
  • Chung-Yi Hu
    • 1
    • 3
  • Hwei-Fang Tien
    • 4
  • Da-Liang Ou
    • 2
    Email author
  • Liang-In Lin
    • 1
    • 3
    Email author
  1. 1.Department of Clinical Laboratory Sciences and Medical Biotechnology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Oncology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
  4. 4.Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan

Personalised recommendations