Medical Oncology

, 32:199 | Cite as

Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells

  • Fang Li
  • Jinquan CuiEmail author
Original Paper


Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.


Cervical cancer HPV E7 Telomerase hTERT VEGF Transfection 



This work was supported in part by a Grant from Jincheng People’s Hospital and Jincheng maternal and child health care hospital.

Conflict of interest

The authors declared that there is no conflict of interest in this work.

Supplementary material

12032_2015_649_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890–907. doi: 10.1016/S0140-6736(07)61416-0.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaewprag J, Umnajvijit W, Ngamkham J, Ponglikitmongkol M. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases. PLoS One. 2013;8(8):e71611. doi: 10.1371/journal.pone.0071611.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63(10):4417–21.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Vandermark ER, Deluca KA, Gardner CR, Marker DF, Schreiner CN, Strickland DA, et al. Human papillomavirus type 16 E6 and E7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology. 2012;425(1):53–60. doi: 10.1016/j.virol.2011.12.023.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82. doi: 10.1038/380079a0.PubMedCrossRefGoogle Scholar
  6. 6.
    Stoppler H, Hartmann DP, Sherman L, Schlegel R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J Biol Chem. 1997;272(20):13332–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu M, Katzenellenbogen RA, Grandori C, Galloway DA. An unbiased in vivo screen reveals multiple transcription factors that control HPV E6-regulated hTERT in keratinocytes. Virology. 2013;446(1–2):17–24. doi: 10.1016/j.virol.2013.07.014.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Nowak JA. Telomerase, cervical cancer, and human papillomavirus. Clin Lab Med. 2000;20(2):369–82.PubMedGoogle Scholar
  9. 9.
    Kailash U, Soundararajan CC, Lakshmy R, Arora R, Vivekanandhan S, Das BC. Telomerase activity as an adjunct to high-risk human papillomavirus types 16 and 18 and cytology screening in cervical cancer. Br J Cancer. 2006;95(9):1250–7. doi: 10.1038/sj.bjc.6603375.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chen L, Wu YY, Liu P, Wang J, Wang G, Qin J, et al. Down-regulation of HPV18 E6, E7, or VEGF expression attenuates malignant biological behavior of human cervical cancer cells. Med Oncol. 2011;28(Suppl 1):S528–39. doi: 10.1007/s12032-010-9690-1.PubMedGoogle Scholar
  11. 11.
    Branca M, Giorgi C, Santini D, Di Bonito L, Ciotti M, Benedetto A, et al. Aberrant expression of VEGF-C is related to grade of cervical intraepithelial neoplasia (CIN) and high risk HPV, but does not predict virus clearance after treatment of CIN or prognosis of cervical cancer. J Clin Pathol. 2006;59(1):40–7. doi: 10.1136/jcp.2005.026922.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Chang JT, Chen YL, Yang HT, Chen CY, Cheng AJ. Differential regulation of telomerase activity by six telomerase subunits. Eur J Biochem. 2002;269(14):3442–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet. 1997;17(4):498–502. doi: 10.1038/ng1297-498.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91. doi: 10.1016/S0959-8049(97)00062-2.PubMedCrossRefGoogle Scholar
  17. 17.
    He C, Xu C, Xu M, Yuan Y, Sun Y, Zhao H, et al. Genomic amplification of hTERC in paraffin-embedded tissues of cervical intraepithelial neoplasia and invasive cancer. Int J Gynecol Pathol. 2012;31(3):280–5. doi: 10.1097/PGP.0b013e318237d50a.PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang J, Wei LH, Li YL, Wu RF, Xie X, Feng YJ, et al. Detection of TERC amplification in cervical epithelial cells for the diagnosis of high-grade cervical lesions and invasive cancer: a multicenter study in China. J Mol Diagn. 2010;12(6):808–17. doi: 10.2353/jmoldx.2010.100021.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Miller J, Dakic A, Chen R, Palechor-Ceron N, Dai Y, Kallakury B, et al. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 2013;9(4):e1003284. doi: 10.1371/journal.ppat.1003284.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611–20. doi: 10.1038/sj.onc.1203817.PubMedCrossRefGoogle Scholar
  21. 21.
    Clere N, Bermont L, Fauconnet S, Lascombe I, Saunier M, Vettoretti L, et al. The human papillomavirus type 18 E6 oncoprotein induces vascular endothelial growth factor 121 (VEGF121) transcription from the promoter through a p53-independent mechanism. Exp Cell Res. 2007;313(15):3239–50. doi: 10.1016/j.yexcr.2007.06.029.PubMedCrossRefGoogle Scholar
  22. 22.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi CH, Song SY, Choi JJ, Park YA, Kang H, Kim TJ, et al. Prognostic significance of VEGF expression in patients with bulky cervical carcinoma undergoing neoadjuvant chemotherapy. BMC Cancer. 2008;8:295. doi: 10.1186/1471-2407-8-295.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y, Li H, Yao G, Li W, Wang F, Jiang Z, et al. Inhibition of telomerase RNA (hTR) in cervical cancer by adenovirus-delivered siRNA. Cancer Gene Ther. 2007;14(8):748–55. doi: 10.1038/sj.cgt.7701056.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu AQ, Ge LY, Lu XL, Luo XL, Cai YL, Ye XQ, et al. Silencing of the hTERT gene by shRNA inhibits colon cancer SW480 cell growth in vitro and in vivo. PLoS One. 2014;9(9):e107019. doi: 10.1371/journal.pone.0107019.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Liu X, Dakic A, Chen R, Disbrow GL, Zhang Y, Dai Y, et al. Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. J Virol. 2008;82(23):11568–76. doi: 10.1128/JVI.01318-08.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, et al. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem. 2005;280(11):10807–16. doi: 10.1074/jbc.M410343200.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu X, Roberts J, Dakic A, Zhang Y, Schlegel R. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology. 2008;375(2):611–23. doi: 10.1016/j.virol.2008.02.025.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lee SH, Kim JW, Oh SH, Kim YJ, Rho SB, Park K, et al. IFN-gamma/IRF-1-induced p27kip1 down-regulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer. FEBS Lett. 2005;579(5):1027–33. doi: 10.1016/j.febslet.2005.01.005.PubMedCrossRefGoogle Scholar
  31. 31.
    Durst M, Gissmann L, Ikenberg H, Zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA. 1983;80(12):3812–5.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Markowitz LE, Dunne EF, Saraiya M, Lawson HW, Chesson H, Unger ER. Quadrivalent human papillomavirus vaccine: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 2007;56(RR-2):1–24.PubMedGoogle Scholar
  33. 33.
    Wanichwatanadecha P, Sirisrimangkorn S, Kaewprag J, Ponglikitmongkol M. Transactivation activity of human papillomavirus type 16 E6*I on aldo-keto reductase genes enhances chemoresistance in cervical cancer cells. J Gen Virol. 2012;93(Pt 5):1081–92. doi: 10.1099/vir.0.038265-0.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen TH, Huang CC, Yeh KT, Chang SH, Chang SW, Sung WW, et al. Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol. 2012;18(30):4051–8. doi: 10.3748/wjg.v18.i30.4051.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Helt AM, Galloway DA. Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol. 2001;75(15):6737–47. doi: 10.1128/JVI.75.15.6737-6747.2001.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol. 2003;77(18):9852–61.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Yu YF, Zhang Y, Shen N, Zhang RY, Lu XQ. Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue. Asian Pac J Trop Med. 2014;7(4):293–6. doi: 10.1016/S1995-7645(14)60041-9.PubMedCrossRefGoogle Scholar
  38. 38.
    Chang H, Rha SY, Jeung HC, Park KH, Kim TS, Kim YB, et al. Telomerase- and angiogenesis-related gene responses to irradiation in human umbilical vein endothelial cells. Int J Mol Med. 2013;31(5):1202–8. doi: 10.3892/ijmm.2013.1300.PubMedGoogle Scholar
  39. 39.
    Mansfield L, Subramanian A, Devalia H, Jiang W, Newbold RF, Mokbel K. HTERT mRNA expression correlates with matrix metalloproteinase-1 and vascular endothelial growth factor expression in human breast cancer: a correlative study using RT-PCR. Anticancer Res. 2007;27(4B):2265–8.PubMedGoogle Scholar
  40. 40.
    Zhou L, Zheng D, Wang M, Cong YS. Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity. Biochem Biophys Res Commun. 2009;386(4):739–43. doi: 10.1016/j.bbrc.2009.06.116.PubMedCrossRefGoogle Scholar
  41. 41.
    Kirkpatrick KL, Newbold RF, Mokbel K. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinog. 2004;3(1):1. doi: 10.1186/1477-3163-3-1.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Tang J, Wang Z, Li X, Li J, Shi H. Human telomerase reverse transcriptase expression correlates with vascular endothelial growth factor-promoted tumor cell proliferation in prostate cancer. Artif Cells Blood Substit Immobil Biotechnol. 2008;36(2):83–93. doi: 10.1080/10731190801932074.PubMedCrossRefGoogle Scholar
  43. 43.
    Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82. doi: 10.1038/nrc3627.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bermudez Y, Yang H, Saunders BO, Cheng JQ, Nicosia SV, Kruk PA. VEGF- and LPA-induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecol Oncol. 2007;106(3):526–37. doi: 10.1016/j.ygyno.2007.05.005.PubMedCrossRefGoogle Scholar
  45. 45.
    Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270–81. doi: 10.1038/ncb2621.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.The Second Affiliated HospitalZhengzhou UniversityZhengzhouChina

Personalised recommendations