Medical Oncology

, 32:193 | Cite as

Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy

  • Zhi-Ming Jiang
  • Shou-Ping Dai
  • Yong-Qing Xu
  • Tao Li
  • Jian Xie
  • Chong Li
  • Zhong-Hui ZhangEmail author
Original Paper


The study describes the development of polylactide-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS)-based nanosystem as a carrier of crizotinib (CZT) to achieve superior anticancer efficacy in lung cancer therapy. We have demonstrated that block copolymer and hydrophobic drug is capable of self-assembling into a very stable nanocarrier, with suitable properties that allow their application for cancer drug delivery. Drug release study showed a sustained release pattern as a result of entrapment in the hydrophobic core of micelles. CZT/PT NP showed a noticeable cytotoxic effect in NCIH3122 lung cancer cells in a dose-dependent manner. Furthermore, morphological imaging and Live/Dead assay revealed a superior anticancer efficacy for nanoformulations. The polymeric nanoparticle showed a predominant presence in the cytoplasmic region of cell, indicating a typical endocytosis-mediated cellular uptake. The annexin V/PI staining-based apoptosis assay showed a remarkable ~40 % apoptosis (early and late apoptosis cells) comparing to only ~25 % apoptosis by free CZT. Taken together, Vitamin E TPGS-modified PLA nanoparticles would be a potential drug delivery system to increase the chemotherapeutic efficacy of CZT in lung cancer chemotherapy.


Lung cancer Crizotinib Apoptosis Polymeric nanoparticles Cell viability 



The study was supported from the research grant of Shandong University. Authors appreciate the help of Dr. Wei Fan for proof-reading the entire manuscript.

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69.PubMedCrossRefGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Wao H, Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta-analysis. Syst Rev. 2013;2:10.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, Spitznagel EL, Piccirillo J. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539.PubMedCrossRefGoogle Scholar
  5. 5.
    Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382:709–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Curran WJ Jr, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Nat Cancer Inst. 2011;103:1452–60.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, Shapiro GI, Costa DB, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Shaw AT, Yasothan U, Kirkpatrick P. Crizotinib. Nat Rev Drug Discov. 2011;10:897–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Okamoto W, Okamoto I, Arao T, Kuwata K, Hatashita E, Yamaguchi H, Sakai K, Yanagihara K, Nishio K, Nakagawa K. Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012;11:1557–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120–17.CrossRefGoogle Scholar
  11. 11.
    Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H. Enhanced anti tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Chambon P, Chen L, Furzeland S, Atkins D, Weaver JVM, Adams DJ. Poly(N-isopropylacrylamide) branched polymer nanoparticles. Polym Chem. 2011;2:941–9.CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33:4889–906.PubMedCrossRefGoogle Scholar
  15. 15.
    Akhtar N, Ahad A, Khar RK, Jaggi M, Aqil M, Iqbal Z, Ahmad FJ, Talegaonkar S. The emerging role of P-glycoprotein inhibitors in drug delivery: a patent review. Expert Opin Ther Pat. 2011;21:561–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and the drug loading ratio. Pharm Res. 2003;20:1864–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Shieh MJ, Hsu CY, Huang LY, Chen HY, Huang FH, Lai PS. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J Control Rel. 2011;152:418–25.CrossRefGoogle Scholar
  18. 18.
    Zhao J, Feng SS. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs. Biomaterials. 2014;35:3340–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Youk HJ, Lee E, Choi MK, Lee YJ, Chung JH, Kim SH, Lee CH, Lim SJ. Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol. J Control Release. 2005;107:43–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma Y, Huang L, Song C, Zeng X, Liu G, Mei L. Nanoparticle formulation of poly(e-caprolactone-co-lactide)-d-a-tocopheryl polyethylene glycol 1000, Succinate random copolymer for cervical cancer treatment. Polymer. 2010;51:5952–9.CrossRefGoogle Scholar
  21. 21.
    Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002;3:311–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhi-Ming Jiang
    • 1
  • Shou-Ping Dai
    • 2
  • Yong-Qing Xu
    • 1
  • Tao Li
    • 1
  • Jian Xie
    • 1
  • Chong Li
    • 1
  • Zhong-Hui Zhang
    • 1
    Email author
  1. 1.Department of Critical-Care MedicineQianfoshan Hospital Affiliated to Shandong UniversityJinanChina
  2. 2.Department of ImagingLinyi People’s Hospital Affiliated to Shandong UniversityLinyiChina

Personalised recommendations