Skip to main content

Picropodophyllin inhibits proliferation and survival of diffuse large B-cell lymphoma cells

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. Although chemotherapy in combination with anti-CD20 antibodies results in a cure rate of 60–70 %, novel treatment approaches are warranted for the remaining patients. The insulin-like growth factor-1 receptor (IGF-1R) and its principal ligands IGF-1 and IGF-2 have been suggested to play pivotal roles in different cancers. However, in DLBCL the importance of this system is less well understood. To assess whether interference with IGF-1R-mediated signaling may represent a therapeutic option for this malignancy, we used a panel of eight DLBCL cell lines together with primary tumor cells derived from lymph nodes in four DLBCL patients. The cells were treated with the cyclolignan picropodophyllin (PPP), a small molecule compound initially described to selectively inhibit the IGF-1R. PPP dose-dependently inhibited proliferation/survival in all cell lines and primary cell preparations. In parallel experiments, the IGF-1R inhibitor NVP-AEW541 and the microtubule-destabilizing compounds podophyllotoxin (PPT) and colchicine were demonstrated to also inhibit growth of the cell lines. Linear regression analysis showed that the responses of the cell lines to PPP correlated with their responses to the microtubule inhibitors PPT and colchicine, but not with the response to NVP-AEW541 or the expression level of surface IGF-1R. Analysis of cell cycle phase distribution revealed that treatment with PPP for only 1 h induced a clear accumulation of cells in the G2/M-phase with a corresponding depletion of the G0/G1-phase. Interestingly, these cell cycle effects could be closely mimicked by using PPT or colchicine. Treatment with PPP led to increased apoptotic cell death in the SU-DHL-6 and U-2932 cell lines, whereas the DB and U-2940 did not undergo apoptosis. However, the DB cells were still killed by PPP, suggesting another mode of cell death for this cell line. The U-2940 cells responded to PPP mainly by inhibition of proliferation. Pretreatment of U-2932 or U-2940 cell lines with PPP at biologically active concentrations did not prevent ligand-induced phosphorylation of IGF-1R at Tyr1131/1136 or its downstream targets AKT and ERK1/2. In contrast, the IGF-1R inhibitor NVP-AEW541 clearly inhibited phosphorylation of IGF-1R and AKT, while ERK1/2 phosphorylation was less affected. Taken together, the inhibitory effects of PPP in DLBCL cells together with its low toxicity in vivo makes it a promising drug candidate in the treatment of this disease. However, we suggest that the primary target of PPP in these cells is not related to inhibition of IGF-1R phosphorylation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    CAS  PubMed  Article  Google Scholar 

  2. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    CAS  PubMed  Article  Google Scholar 

  3. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1–12.

    CAS  PubMed  Article  Google Scholar 

  4. Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K. Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood. 1996;88:2250–8.

    CAS  PubMed  Google Scholar 

  5. Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson O, Axelson M, Lennartsson J, Hellman U, Carlson K, Osterborg A, Vanderkerken K, Nilsson K, Jernberg-Wiklund H. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood. 2006;107:669–78.

    PubMed  Article  Google Scholar 

  6. Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O, Axelson M, Asosingh K, Nilsson K, Van Camp B, Vanderkerken K. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood. 2006;107:655–60.

    CAS  PubMed  Article  Google Scholar 

  7. Shi P, Lai R, Lin Q, Iqbal AS, Young LC, Kwak LW, Ford RJ, Amin HM. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood. 2009;114:360–70.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Huang Z, Fang Z, Zhen H, Zhou L, Amin HM, Shi P. Inhibition of type I insulin-like growth factor receptor tyrosine kinase by picropodophyllin induces apoptosis and cell cycle arrest in T lymphoblastic leukemia/lymphoma. Leuk Lymphoma. 2014;55:1876–83.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Vishwamitra D, Shi P, Wilson D, Manshouri R, Vega F, Schlette EJ, Amin HM. Expression and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle cell lymphoma. Haematologica. 2011;96:871–80.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Liang Z, Diepstra A, Xu C, van Imhoff G, Plattel W, Van Den Berg A, Visser L. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma. PLoS One. 2014;9:e87474.

    PubMed Central  PubMed  Article  Google Scholar 

  11. Cortese F, Bhattacharyya B, Wolff J. Podophyllotoxin as a probe for the colchicine binding site of tubulin. J Biol Chem. 1977;252:1134–40.

    CAS  PubMed  Google Scholar 

  12. Imbert TF. Discovery of podophyllotoxins. Biochimie. 1998;80:207–22.

    CAS  PubMed  Article  Google Scholar 

  13. Loike JD, Brewer CF, Sternlicht H, Gensler WJ, Horwitz SB. Structure-activity study of the inhibition of microtubule assembly in vitro by podophyllotoxin and its congeners. Cancer Res. 1978;38:2688–93.

    CAS  PubMed  Google Scholar 

  14. Girnita A, Girnita L, del Prete F, Bartolazzi A, Larsson O, Axelson M. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 2004;64:236–42.

    CAS  PubMed  Article  Google Scholar 

  15. Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene. 2004;23:7854–62.

    CAS  PubMed  Article  Google Scholar 

  16. Yin S, Girnita A, Stromberg T, Khan Z, Andersson S, Zheng H, Ericsson C, Axelson M, Nister M, Larsson O, Ekstrom TJ, Girnita L. Targeting the insulin-like growth factor-1 receptor by picropodophyllin as a treatment option for glioblastoma. Neuro Oncol. 2010;12:19–27.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Yin SC, Guo W, Tao ZZ. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model. Biochem Biophys Res Commun. 2013;439:1–5.

    CAS  PubMed  Article  Google Scholar 

  18. Girnita A, All-Ericsson C, Economou MA, Astrom K, Axelson M, Seregard S, Larsson O, Girnita L. The insulin-like growth factor-I receptor inhibitor picropodophyllin causes tumor regression and attenuates mechanisms involved in invasion of uveal melanoma cells. Clin Cancer Res. 2006;12:1383–91.

    CAS  PubMed  Article  Google Scholar 

  19. Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H, Efstratiadis A. Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci USA. 2009;106:2359–64.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, Garcia-Echeverria C, Pearson MA, Hofmann F, Anderson KC, Kung AL. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004;5:221–30.

    CAS  PubMed  Article  Google Scholar 

  21. Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S, Croci S, Perdichizzi S, Zambelli D, Serra M, Garcia-Echeverria C, Hofmann F, Picci P. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 2005;65:3868–76.

    CAS  PubMed  Article  Google Scholar 

  22. Ekman S, Frodin JE, Harmenberg J, Bergman A, Hedlund A, Dahg P, Alvfors C, Stahl B, Bergstrom S, Bergqvist M. Clinical phase I study with an insulin-like growth factor-1 receptor inhibitor: experiences in patients with squamous non-small cell lung carcinoma. Acta Oncol. 2011;50:441–7.

    CAS  PubMed  Article  Google Scholar 

  23. Lindhagen E, Nygren P, Larsson R. The fluorometric microculture cytotoxicity assay. Nat Protoc. 2008;3:1364–9.

    CAS  PubMed  Article  Google Scholar 

  24. Stromberg T, Dimberg A, Hammarberg A, Carlson K, Osterborg A, Nilsson K, Jernberg-Wiklund H. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004;103:3138–47.

    PubMed  Article  Google Scholar 

  25. Vindelov LL. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei. Virchows Arch B Cell Pathol. 1977;24:227–42.

    CAS  PubMed  Google Scholar 

  26. Baserga R. The decline and fall of the IGF-I receptor. J Cell Physiol. 2013;228:675–9.

    CAS  PubMed  Article  Google Scholar 

  27. Wu X, Sooman L, Wickstrom M, Fryknas M, Dyrager C, Lennartsson J, Gullbo J. Alternative cytotoxic effects of the postulated IGF-IR inhibitor picropodophyllin in vitro. Mol Cancer Ther. 2013;12:1526–36.

    CAS  PubMed  Article  Google Scholar 

  28. Waraky A, Akopyan K, Parrow V, Strömberg T, Axelson M, Abrahmsén L, Lindqvist A, Larsson O, Aleem E. Picropodophyllin causes mitotic arrest and catastrophe by depolymerizing microtubules via Insulin-like growth factor-1 receptor-independent mechanism. Oncotarget. 2014;5:8379–92.

  29. Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC, Chung JG. MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells. J Pharmacol Exp Ther. 2010;334:477–88.

    CAS  PubMed  Article  Google Scholar 

  30. Feng X, Aleem E, Lin Y, Axelson M, Larsson O, Stromberg T. Multiple antitumor effects of picropodophyllin in colon carcinoma cell lines: clinical implications. Int J Oncol. 2012;40:1251–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gensler WJ, Gatsonis CD. The podophyllotoxin-picropodophyllin equilibrium. J Org Chem. 1966;31:3224–7.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Swedish Cancer Foundation, Swedish Research Council, European Commission Marie Curie Fellowship (EA), Cancer Society in Stockholm, Children Cancer Society, Lundberg’s Research Foundation in Gothenburg, Stockholm County Council and Karolinska Institutet.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Delforoush.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strömberg, T., Feng, X., Delforoush, M. et al. Picropodophyllin inhibits proliferation and survival of diffuse large B-cell lymphoma cells. Med Oncol 32, 188 (2015). https://doi.org/10.1007/s12032-015-0630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0630-y

Keywords

  • Diffuse large B-cell lymphoma
  • DLBCL
  • Picropodophyllin
  • PPP
  • IGF-1R