Medical Oncology

, 32:157 | Cite as

Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines

  • Yan Zhang
  • Xueyan Zhang
  • Jinsu Huang
  • Qianggang DongEmail author
Original Paper


The refractory pulmonary adenocarcinoma is characterized by its metastasis and resistance to cytotoxic agents. While the underlying molecular mechanism is unclear, the property of chemoresistance may mainly lie in the presence of highly resistant cancer stem cells. We examined the function of Wnt/β-catenin signaling in maintaining cancer stem cells (CSCs) in lung adenocarcinoma. Lentivirus-mediated knockdown of β-catenin expression accelerated cell cycle. Subsequently, β-catenin knockdown PC9 cells improve the sensitivity to chemotherapy. Further focusing on Wnt signal by administrating PP and EGFR-TKIs as Wnt antagonists can decrease metastasis and induce apoptosis. Collectively, these results indicate that Wnt signaling pathway plays an essential role in maintaining highly resistant CSCs, regulation of cell cycle, metastasis and apoptosis in lung adenocarcinoma.


Wnt signaling Stem-like property Drug resistance Metastasis Apoptosis 



Lipoprotein receptor-related protein


Adenomatous polyposis coli


Glycogen synthase kinase 3


R-spondin 2


Casein kinase 1




T-cell factor


Lymphoid enhancer factor


Tyrosine kinase inhibitors


Label dilution cells


Phosphate buffer saline


Aldehyde dehydrogenase


Thyroid transcription factor 1




Dulbecco’s modification of Eagle’s medium


Breast cancer resistance protein


Leucine-rich repeat G-protein-coupled receptors

β-KD PC9 cells

β-catenin knockdown PC9 cells


Epidermal growth factor receptor


CFSE mean intensity


Label-retaining cells


Fetal bovine serum



We thank the staff in Flow Cytometry Department of Shanghai Jiao Tong University, School of Medicine for their work. This work was supported by grants from the Shanghai Natural Science Foundation of China (13ZR1438600).

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  3. 3.
    Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol. 2010;75(3):173–234.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee YC, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013;73(1):406–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol. 2011;2011:941876.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Rivera C, Rivera S, Loriot Y, Vozenin MC, Deutsch E. Lung cancer stem cell: new insights on experimental models and preclinical data. J Oncol. 2011;2011:549181.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    O’Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O’Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7(12):1880–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383(2):157–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Q, Taguchi A, Schliekelman M, Wong CH, Chin A, Kuick R, et al. Comprehensive proteomic profiling of aldehyde dehydrogenases in lung adenocarcinoma cell lines. Int J Proteomics. 2011;2011:145010. doi: 10.1155/2011/145010.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Segura-Carretero A, Joven J, Martin-Castillo B, et al. Stem cell-like ALDH (bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin. Cell Cycle. 2013;12(21):3390–404.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer. 2011;71(1):3–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Harris-Johnson KS, Domyan ET, Vezina CM, Sun X. Beta-catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA. 2009;106(38):16287–92.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, et al. Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol. 2014;234(1):99–107.CrossRefPubMedGoogle Scholar
  20. 20.
    Prud’homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 2012;18(19):2838–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Teng Y, Wang X, Wang Y, Ma D. Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 2010;392(3):373–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1 alpha. Nat Chem Biol. 2010;6(11):829–36.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Xu W, Lacerda L, Debeb BG, Atkinson RL, Solley TN, Li L, et al. The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PLoS One. 2013;8(8):e71508.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Dolnikov A, Xu N, Shen S, Song E, Holmes T, Klamer G, et al. GSK-3 beta inhibition promotes early engraftment of ex vivo-expanded haematopoietic stem cells. Cell Prolif. 2014;47(2):113–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19(6):2588–96.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26(7):611–23.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Naujok O, Lentes J, Diekmann U, Davenport C, Lenzen S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014;7:273.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Zhang XY, Zheng BQ, Han BH, Huang JS, Geng Q, Xu HL, et al. Lung adenocarcinoma stem cell phenotypes and their correlation with patient prognosis. Zhonghua Zhong Liu Za Zhi. 2009;31(11):836–40.PubMedGoogle Scholar
  29. 29.
    Yin X, Li YW, Jin JJ, Zhou Y, Ren ZG, Qiu SJ, et al. The clinical and prognostic implications of pluripotent stem cell gene expression in hepatocellular carcinoma. Oncol Lett. 2013;5(4):1155–62.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Paul I, Bhattacharya S, Chatterjee A, Ghosh MK. Current understanding on EGFR and Wnt/beta-catenin signaling in glioma and their possible crosstalk. Genes Cancer. 2013;4(11–12):427–46.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Georgopoulos NT, Kirkwood LA, Southgate J. A novel bidirectional positive-feedback loop between Wnt-beta-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci. 2014;127(Pt 13):2967–82.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and beta-catenin, in primary lung adenocarcinoma—their prognostic significance. Pathol Int. 2012;62(12):792–801.CrossRefPubMedGoogle Scholar
  33. 33.
    Cortes-Dericks L, Galetta D, Spaggiari L, Schmid RA, Karoubi G. High expression of octamer-binding transcription factor 4A, prominin-1 and aldehyde dehydrogenase strongly indicates involvement in the initiation of lung adenocarcinoma resulting in shorter disease-free intervals. Eur J Cardiothorac Surg. 2012;41(6):e173–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Moore N, Houghton J, Lyle S. Slow-cycling therapy-resistant cancer cells. Stem Cells Dev. 2012;21(10):1822–30.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Bragado P, Estrada Y, Sosa MS, Avivar-Valderas A, Cannan D, Genden E, et al. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties. PLoS One. 2012;7(1):e29974.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer. 2008;8:48.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yan Zhang
    • 1
  • Xueyan Zhang
    • 2
  • Jinsu Huang
    • 2
  • Qianggang Dong
    • 1
    Email author
  1. 1.Shanghai Cancer Institute, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Department of Pulmonary Medicine, Shanghai Chest HospitalShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations