Advertisement

Medical Oncology

, 32:143 | Cite as

Suppressed expression of LDHB promotes pancreatic cancer progression via inducing glycolytic phenotype

  • Jiujie Cui
  • Ming Quan
  • Weihua Jiang
  • Hai Hu
  • Feng Jiao
  • Ning Li
  • Ziliang Jin
  • Lei Wang
  • Yu Wang
  • Liwei WangEmail author
Original Paper

Abstract

Lactate dehydrogenase B (LDHB) is widely expressed in adult somatic tissue and is one of the two subunits of lactate dehydrogenase, which is the key glycolytic enzyme and catalyzes the interconversion of pyruvate and lactate. However, the roles of LDHB in glycolysis and tumor progression were obscure in different types of cancer. Here, we determined the roles of LDHB in pancreatic cancer development and progression. We found suppressed expression of LDHB in pancreatic cancer which was due to promoter hypermethylation and deceased expression of LDHB led to glycolytic transition. Functional analysis revealed that suppressed expression of LDHB promoted pancreatic cancer cells proliferation, invasion, and migration in hypoxia. Thus, LDHB might function as a suppressor of glycolysis and suppressed pancreatic cancer progression.

Keywords

LDHB Metastasis Growth Pancreatic cancer 

Notes

Acknowledgments

Supported by Shanghai Jiao Tong University Oversea Training Scholarship (to J. Cui and M. Quan); Grants 81171887 and 91229117 from the National Natural Science Foundation of China (to L. Wang).

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical standard

The use of the tissue microarray was approved by the medical ethics committee.

References

  1. 1.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  2. 2.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275:21797–800.CrossRefPubMedGoogle Scholar
  4. 4.
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24:68–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Drent M, Cobben NA, Henderson RF, Wouters EF, van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur Respir J. 1996;9:1736–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Koukourakis MI, Kontomanolis E, Giatromanolaki A, Sivridis E, Liberis V. Serum and tissue LDH levels in patients with breast/gynaecological cancer and benign diseases. Gynecol Obstet Invest. 2009;67:162–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC, Harris AL. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer. 2003;89:877–85.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastas. 2005;22:25–30.CrossRefGoogle Scholar
  9. 9.
    Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 1997;94:6658–63.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lin Q, Cong X, Yun Z. Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha. Mol Cancer Res. 2011;9:757–65.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Leiblich A, Cross SS, Catto JW, Phillips JT, Leung HY, Hamdy FC, Rehman I. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene. 2006;25:2953–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Maekawa M, Taniguchi T, Ishikawa J, Sugimura H, Sugano K, Kanno T. Promoter hypermethylation in cancer silences LDHB, eliminating lactate dehydrogenase isoenzymes 1-4. Clin Chem. 2003;49:1518–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Dennison JB, Molina JR, Mitra S, Gonzalez-Angulo AM, Balko JM, Kuba MG, Sanders ME, Pinto JA, Gomez HL, Arteaga CL, et al. Lactate dehydrogenase B: a metabolic marker of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2013;19:3703–13.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D, Torres E, Li L, Haley B, Stephan JP, et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res. 2012;72:5812–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim JH, Kim EL, Lee YK, Park CB, Kim BW, Wang HJ, Yoon CH, Lee SJ, Yoon G. Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via mitochondrial defects. Exp Cell Res. 2011;317:1108–18.CrossRefPubMedGoogle Scholar
  16. 16.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S, Gao Y, Huang S, Xie K. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res. 2014;20:2595–606.CrossRefPubMedGoogle Scholar
  19. 19.
    Shi M, Cui J, Du J, Wei D, Jia Z, Zhang J, Zhu Z, Gao Y, Xie K. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin Cancer Res. 2014;20:4370–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9:6371–80.PubMedGoogle Scholar
  21. 21.
    Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E, van Lohuizen M, Ganesan S. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol. 2011;31:1972–82.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Chen S, Sheng C, Liu D, Yao C, Gao S, Song L, Jiang W, Li J, Huang W. Enhancer of zeste homolog 2 is a negative regulator of mitochondria-mediated innate immune responses. J Immunol. 2013;191:2614–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest. 2014;124:564–79.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Khoo CP, Micklem K, Watt SM. A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro. Tissue Eng Part C Methods. 2011;17:895–906.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech. 2011;4:727–32.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39:232–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Raaphorst FM. Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet. 2005;14:R93–100.CrossRefPubMedGoogle Scholar
  29. 29.
    Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia. 2005;7:1–6.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60:916–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jiujie Cui
    • 1
    • 2
    • 3
  • Ming Quan
    • 2
    • 3
  • Weihua Jiang
    • 1
    • 3
  • Hai Hu
    • 1
    • 3
  • Feng Jiao
    • 1
    • 3
  • Ning Li
    • 1
    • 3
  • Ziliang Jin
    • 1
    • 3
  • Lei Wang
    • 1
    • 3
  • Yu Wang
    • 1
    • 3
  • Liwei Wang
    • 1
    • 3
    Email author
  1. 1.Department of OncologyShanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Gastroenterology, Hepatology and NutritionThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Shanghai Key Laboratory of Pancreatic DiseasesShanghaiPeople’s Republic of China

Personalised recommendations