Skip to main content
Log in

Mechanical characterization of cervical squamous carcinoma cells by atomic force microscopy at nanoscale

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

To investigate the nanoscale mechanical properties of exfoliated cervical epithelial cells from patients to further reveal the pathogenesis of cervical cancer and help early diagnose. Exfoliated cells were collected from nine patients with chronic cervicitis or CIN1(control group), 30 patients with CIN2–3 (CIN 2–3 group), and 13 patients with cervical cancer (cervical cancer group). Stiffness of the cells was determined by atomic force microscope (AFM). Expression of P16INK4A was studied by immunocytochemistry. Environmental scanning electron microscopy was performed to observe the surface microtopography of the exfoliated cells. Young’s modulus was measured for cells exfoliated from control and patients with CIN 2–3 and cervical cancer by AFM. The results showed that with increasing cervical lesions, the Young’s modulus of the exfoliated cervical cells increased (P < 0.05). The modulus of the exfoliated cells was significantly decreased in the three patients 1 year after the surgery compared with the value before the surgery. Expression of P16INK4A in the exfoliated cells had not been statistically significant. Squamous cells from cervical cancer group had dense and disordered microvilli without clear microridges compare to other groups. The Young’s modulus is increased from the control group, to CIN2–3 and cervical cancer groups, suggesting that the stiffness of cervical epithelial cells increases gradually with increasing cervical lesions. The changes in the mechanical properties of the exfoliated cells occur earlier than the changes in cell morphology. Therefore, analysis of mechanical properties of the exfoliated cells may be used to aid early diagnosis of the cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ito T, Ishizuka T, Suzuki K, Ikoma Y, Saito J, Onuma M, Miwa T, Hashiba Y, Kuno N, Horibe N, Mizuno N, Ishikawa K, Kazeto S. Cervical cancer in young Japanese women. Arch Gynecol Obstet. 2000;264:68–70.

    Article  CAS  PubMed  Google Scholar 

  2. Frega A, Stentella P, De Ioris A, Piazze JJ, Fambrini M, Marchionni M, Cosmi EV. Young women, cervical intraepithelial neoplasia and human papillomavirus: risk factors for persistence and recurrence. Cancer Lett. 2003;196:127–34.

    Article  CAS  PubMed  Google Scholar 

  3. Arbyn M, Antoine J, Mägi M, Smailyte G, Stengrevics A, Suteu O, Valerianova Z, Bray F, Weiderpass E. Trends in cervical cancer incidence and mortality in the Baltic countries, Bulgaria and Romania. Int J Cancer. 2011;128:1899–907.

    Article  CAS  PubMed  Google Scholar 

  4. Sigurdsson K. Cervical cancer: cytological cervical screening in Iceland and implications of HPV vaccines. Cytopathology. 2010;21:213–22.

    Article  CAS  PubMed  Google Scholar 

  5. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Article  CAS  PubMed  Google Scholar 

  6. Mechanics Jonietz E. The forces of cancer. Nature. 2012;491:S56–7.

    Article  Google Scholar 

  7. Eslami S, Zareian R, Jalili N. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization. Rev Sci Instrum. 2012;83:105002. doi:10.1063/1.4757115.

    Article  PubMed  Google Scholar 

  8. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012;7:757–65.

    Article  CAS  PubMed  Google Scholar 

  9. Ramachandran S, Quist AP, Kumar S, Lal R. Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir. 2006;22:8156–62.

    Article  CAS  PubMed  Google Scholar 

  10. Afrin R, Alam MT, Ikai A. Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy. Protein Sci. 2005;14:1447–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sun Z, Martinez-Lemus LA, Trache A, Trzeciakowski JP, Davis GE, Pohl U, Meininger GA. Mechanical properties of the interaction between fibronectin and alpha(5)beta(1)-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol. 2005;289:H2526–35.

    Article  CAS  PubMed  Google Scholar 

  12. Chang YR, Raghunathan VK, Garland SP, Morgan JT, Russell P, Murphy CJ. Automated AFM force curve analysis for determining elastic modulus of biomaterials and biological samples. J Mech Behav Biomed Mater. 2014;37:209–18.

    Article  CAS  PubMed  Google Scholar 

  13. Dufrêne YF, Lee GU. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim Biophys Acta. 2000;1509:14–41.

    Article  PubMed  Google Scholar 

  14. Zhang X, Chen A, De Leon D, Li H, Noiri E, Moy VT, Goligorsky MS. Atomic force microscopy measurement of leukocyte-endothelial interaction. Am J Physiol-Heart C. 2004;286:H359–67.

    Article  CAS  Google Scholar 

  15. Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2:780–3.

    Article  CAS  PubMed  Google Scholar 

  16. Lekka M, Laidler P, Ignacak J, Łabedz M, Lekki J, Struszczyk H, Stachura Z, Hrynkiewicz AZ. The effect of chitosan on stiffness and glycolytic activity of human bladder cells. BBA-Mol Cell Res. 2001;1540:127–36.

    CAS  Google Scholar 

  17. Zhang G, Long M, Wu ZZ, Yu WQ. Mechanical properties of hepatocellular carcinoma cells. World J Gastroenterol. 2002;8:243–6.

    PubMed  Google Scholar 

  18. Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PC, Ros R. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol. 2011;8:015007. doi:10.1088/1478-3975/8/1/015007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Regauer S, Reich O. CK17 and p16 expression patterns distinguish (atypical) immature squamous metaplasia from high-grade cervical intraepithelial neoplasia (CIN III). Histopathology. 2007;50:629–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forrò L, Dietler G, Catsicas S. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskeleton. 2005;62:124–32.

    Article  CAS  PubMed  Google Scholar 

  21. Bhadriraju K, Hansen LK. Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res. 2002;278:92–100.

    Article  CAS  PubMed  Google Scholar 

  22. Yamane Y, Shiga H, Haga H, Kawabata K, Abe K, Ito E. Quantitative analyses of topography and elasticity of living and fixed astrocytes. J Electron Microsc (Tokyo). 2000;49:463–71.

    Article  CAS  Google Scholar 

  23. Henry MR, de Mesy Jensen KL, Skoglund CD, Armstrong DW. Chlamydia trachomatis in routine cervical smears. A microscopic and ultrastructural analysis. Acta Cytol. 1993;37:343–52.

    CAS  PubMed  Google Scholar 

  24. Rubio CA. Exfoliating cervicovaginal surface. II. Scanning electron microscopical studies during estrous-cycle in mice. Anat Rec. 1976;185:359–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81472429) and National Basic Research Program of China (973 Program, 2013CB933702).

Conflict of interest

There is also no conflict of interest involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Han or Li Geng.

Additional information

Yong-xia Ding and Yuan Cheng are Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Yx., Cheng, Y., Sun, Qm. et al. Mechanical characterization of cervical squamous carcinoma cells by atomic force microscopy at nanoscale. Med Oncol 32, 71 (2015). https://doi.org/10.1007/s12032-015-0507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0507-0

Keywords

Navigation